# CoreUtils-Python
A comprehensive collection of Python utility functions and modules for data science, file operations, serialization, encryption, and general-purpose programming tasks.
[](https://www.python.org/downloads/)
[](LICENSE)
[](UNIT_TESTS/)
## Table of Contents
- [Overview](#overview)
- [Installation](#installation)
- [Quick Start](#quick-start)
- [Module Documentation](#module-documentation)
- [Core Utilities](#core-utilities)
- [Data Processing](#data-processing)
- [Security & Encryption](#security--encryption)
- [File Operations](#file-operations)
- [Testing](#testing)
- [Running Tests](#running-tests)
- [Requirements](#requirements)
- [Contributing](#contributing)
- [License](#license)
## Overview
CoreUtils-Python is a modular collection of well-documented, tested utility functions designed to streamline common programming tasks across data science, system operations, and application development.
**Key Features:**
- ๐ง **Comprehensive Utilities** - Functions, lists, strings, numbers, dictionaries
- ๐ **Data Processing** - pandas, NumPy, Polars, PyArrow integration
- ๐ **Security** - Encryption, signing, secure serialization, CSV-compatible integrity
- ๐งช **Well Tested** - 418+ unit tests with pytest
- ๐ **Documented** - NumPy-style docstrings throughout
- โก **Performance** - Optimized for large-scale data operations
## Installation
### Basic Installation
```bash
# Clone the repository
git clone https://github.com/Ruppert20/CoreUtils-Python.git
cd CoreUtils-Python
# Install dependencies
pip install -r requirements.txt
```
### Requirements
- Python 3.13.2 or greater
- See [requirements.txt](requirements.txt) for full dependency list
## Quick Start
```python
# Import utilities
from src.generics import notnull, coalesce
from src.lists import chunk_list, flatten_list
from src.strings import convert_identifier_case
from src.numbers import extract_num, isfloat
from src.signature import SignedFile
from datetime import datetime
# Use null checking
if notnull(value):
process(value)
# Coalesce values
result = coalesce(None, '', default_value)
# Chunk data for batch processing
for chunk in chunk_list(large_list, 100):
process_batch(chunk)
# Convert naming conventions
camel = convert_identifier_case('user_name', 'camelCase')
# Write signed file with header metadata
header = {"version": "1.0", "created": datetime.now(), "author": "alice"}
SignedFile.write("data.bin", {"key": "value"}, header=header)
# Write CSV with integrity signature (pandas-compatible)
csv_data = b"name,age\nAlice,30\nBob,25\n"
SignedFile.write("data.csv", csv_data, signature_as_comment=True)
# Read back with verification and header
data, meta = SignedFile.read("data.bin", return_header=True)
print(f"Created by {meta['author']} on {meta['created']}")
```
## Module Documentation
### Core Utilities
#### generics.py
Generic utility functions for null handling and object operations.
**Key Functions:**
- `notnull(v)` - Comprehensive null checking (None, empty containers, pd.NA, np.nan)
- `isnull(v)` - Inverse of notnull
- `coalesce(*values)` - Return first non-null value
- `get_name(obj)` - Extract object name
[๐ Code](src/generics.py) | [๐งช Tests](UNIT_TESTS/test_generics.py) | [๐ Documentation](Documentation/generics.md)
---
#### functions.py
Function utilities including dynamic loading, introspection, and debugging.
**Key Functions:**
- `get_func(func_path)` - Dynamically load functions from string paths
- `filter_kwargs(func, kwargs)` - Filter kwargs to match function parameters
- `get_function_signature(func)` - Extract comprehensive function metadata
- `inspect_class(cls)` - Extract class properties and methods
- `is_pickleable(obj)` - Check if object can be pickled
[๐ Code](src/functions.py) | [๐งช Tests](UNIT_TESTS/test_functions.py) | [๐ Documentation](Documentation/functions.md)
---
#### lists.py
List manipulation utilities for chunking, intersection, and flattening.
**Key Functions:**
- `convert_list_to_string(lst, encapsulate=False)` - Convert list to comma-separated string
- `chunk_list(lst, n)` - Split list into equal-sized chunks
- `list_intersection(lst1, lst2)` - Find common elements preserving order
- `flatten_list(nested)` - Recursively flatten nested lists
[๐ Code](src/lists.py) | [๐งช Tests](UNIT_TESTS/test_lists.py) | [๐ Documentation](Documentation/lists.md)
---
#### strings.py
String manipulation including case conversion, cleaning, and parsing.
**Key Functions:**
- `remove_illegal_characters(s, case='snake_case')` - Clean strings for identifiers
- `convert_identifier_case(id, target_format)` - Convert between naming conventions
- `snake_to_camel_case(s)` - Convert snake_case to camelCase
- `camel_to_snake_case(s)` - Convert camelCase to snake_case
- `get_file_name_components(path)` - Parse file paths into components
- `tokenize_id(id_str, token_index)` - Split and extract tokens from IDs
[๐ Code](src/strings.py) | [๐งช Tests](UNIT_TESTS/test_strings.py) | [๐ Documentation](Documentation/strings.md)
---
#### numbers.py
Numerical operations, extraction, and validation.
**Key Functions:**
- `extract_num(input_str, return_pos=0)` - Extract numbers from strings
- `isfloat(value)` - Check if value can be converted to float
- `convert_to_comma_seperated_integer_list(val)` - Convert to comma-separated integers
[๐ Code](src/numbers.py) | [๐งช Tests](UNIT_TESTS/test_numbers.py) | [๐ Documentation](Documentation/numbers.md)
---
#### dictionaries.py
Dictionary utilities for pandas aggregation operations.
**Key Functions:**
- `create_aggregation_dict(col_action_dict, start_col, end_col)` - Create pandas groupby aggregation dictionaries
[๐ Code](src/dictionaries.py) | [๐งช Tests](UNIT_TESTS/test_dictionaries.py) | [๐ Documentation](Documentation/dictionaries.md)
---
#### git.py
Git repository metadata extraction.
**Key Functions:**
- `get_git_metadata()` - Extract comprehensive git repository information
[๐ Code](src/git.py) | [๐ Documentation](Documentation/git.md)
---
### Data Processing
#### core_types.py
Cross-library type classification and detection system.
**Key Features:**
- `CoreDataType` enum - Universal type classification
- Type detection from objects and strings
- Support for pandas, NumPy, Polars, PyArrow
- String representation parsing (JSON, XML, UUID, dates)
[๐ Code](src/core_types.py) | [๐ Documentation](Documentation/core_types.md)
---
#### iterables.py
Memory profiling and object analysis utilities.
**Key Functions:**
- `deep_stats(obj)` - Calculate deep memory size with cycle detection
- `find_large_objects(obj, threshold_kb)` - Identify memory-intensive objects
[๐ Code](src/iterables.py) | [๐ Documentation](Documentation/iterables.md)
---
#### serialization.py
Extended serialization with multi-format support (JSON, YAML, CBOR, Pickle).
**Key Features:**
- XSer class - Destination-aware serialization
- Automatic fallback chain: Structured โ CBOR โ Pickle
- NumPy array support
- HDF5 and Parquet metadata support
[๐ Code](src/serialization.py) | [๐ Documentation](Documentation/serialization.md)
---
#### enhanced_logging.py
Advanced logging with emoji support, progress bars, and structured output.
**Key Features:**
- Enhanced logger with emoji integration
- Progress bar support
- Structured logging for metrics
- Context managers for scoped logging
[๐ Code](src/enhanced_logging.py) | [๐ Documentation](Documentation/enhanced_logging.md)
---
#### parrallelization.py
Parallel processing utilities with comprehensive error handling.
**Key Features:**
- ParallelProcessor class
- Support for serial, thread-based, and process-based execution
- Metrics collection and reporting
- Integration with enhanced logging
[๐ Code](src/parrallelization.py) | [๐ Documentation](Documentation/parrallelization.md)
---
### Security & Encryption
#### encrypt.py
Encryption utilities using Fernet symmetric encryption.
**Key Features:**
- Encryptor class for data encryption/decryption
- CryptoYAML for encrypted YAML configuration files
- Key generation and management
[๐ Code](src/encrypt.py) | [๐งช Tests](UNIT_TESTS/test_encrypt.py) | [๐ Documentation](Documentation/encrypt.md)
---
#### signature.py
Atomic file writing with cryptographic integrity verification, encryption, and metadata support.
**Key Features:**
- SignedFile class for signed file operations
- SHA-256/HMAC-SHA256 signatures with integrity verification
- Optional Fernet encryption with authenticated HMAC
- **Python object serialization** (via XSer) - auto-serializes dicts, lists, numpy, datetime
- **Optional header metadata** - Store version info, timestamps, and structured metadata
- **CSV-compatible commented signatures** - Write `#` comment signatures for pandas/Excel compatibility
- Atomic writes with platform-independent fsync
- Chunked reading for large files
[๐ Code](src/signature.py) | [๐งช Tests](UNIT_TESTS/test_signature.py) | [๐ Documentation](Documentation/signature.md)
---
### File Operations
#### search.py
Flexible file search utilities with pattern matching and filtering.
**Key Features:**
- FileSearcher class for advanced file searching
- Pattern matching with regex support
- File type filtering and exclusion patterns
- Recursive and non-recursive search modes
[๐ Code](src/search.py) | [๐งช Tests](UNIT_TESTS/test_search.py) | [๐ Documentation](Documentation/search.md)
---
### Testing
#### debugging.py
Testing utilities for random data generation.
**Key Functions:**
- `generate_random_sequence(dtype, n, percent_null, seed)` - Generate deterministic test data
- Random generators for all common data types (TEXT, UUID, INTEGER, FLOAT, DATE, JSON, XML, etc.)
- `debug_print(*args)` - Print debug output with visual separators
[๐ Code](src/debugging.py) | [๐งช Tests](UNIT_TESTS/test_debugging.py) | [๐ Documentation](Documentation/debugging.md)
---
## Running Tests
All tests use pytest and follow the `test_*.py` naming convention.
### Run All Tests
```bash
cd UNIT_TESTS
python run_all_tests.py
```
### Run with Verbose Output
```bash
python run_all_tests.py -v
```
### Run with Coverage
```bash
python run_all_tests.py --coverage
```
### Run Specific Tests
```bash
# Run tests matching a pattern
python run_all_tests.py -k test_generics
# Run a specific test file
pytest test_functions.py -v
# Run a specific test class
pytest test_functions.py::TestGetFunc -v
# Run a specific test method
pytest test_functions.py::TestGetFunc::test_get_builtin_function -v
```
### Test Statistics
- **Total Tests:** 223+
- **Coverage:** Comprehensive coverage of public APIs
- **Frameworks:** pytest (supports both pytest and unittest styles)
- **Status:** โ
All tests passing
[๐ View Test Documentation](UNIT_TESTS/README.md) | [๐ View Test Summary](UNIT_TESTS/TEST_SUMMARY.md)
---
## Requirements
### Core Dependencies
```
numpy>=2.3.2 # Numerical computing
pandas>=2.2.3 # Data manipulation
```
### Serialization
```
cbor2>=5.7.0 # CBOR encoding
PyYAML>=6.0.2 # YAML support
```
### Security
```
cryptography>=45.0.7 # Encryption and signing
```
### Testing
```
pytest>=8.4.2 # Test framework
pytest-cov>=4.1.0 # Coverage plugin
```
[๐ View Full Requirements](requirements.txt)
---
## Project Structure
```
CoreUtils-Python/
โโโ src/ # Source modules
โ โโโ core_types.py # Type classification system
โ โโโ debugging.py # Testing and debugging utilities
โ โโโ dictionaries.py # Dictionary operations
โ โโโ encrypt.py # Encryption utilities
โ โโโ encrypted_signature.py # Combined encryption + signing
โ โโโ enhanced_logging.py # Advanced logging
โ โโโ functions.py # Function utilities
โ โโโ generics.py # Generic utilities
โ โโโ git.py # Git metadata
โ โโโ iterables.py # Memory profiling
โ โโโ lists.py # List operations
โ โโโ numbers.py # Numerical utilities
โ โโโ parrallelization.py # Parallel processing
โ โโโ search.py # Search utilities
โ โโโ serialization.py # Extended serialization
โ โโโ signature.py # File signing
โ โโโ strings.py # String manipulation
โ
โโโ UNIT_TESTS/ # Test suite
โ โโโ test_*.py # Test modules (223+ tests)
โ โโโ run_all_tests.py # Test runner
โ โโโ README.md # Test documentation
โ โโโ TEST_SUMMARY.md # Test results summary
โ
โโโ requirements.txt # Project dependencies
โโโ README.md # This file
```
---
## Contributing
Contributions are welcome! Please follow these guidelines:
1. **Fork the repository**
2. **Create a feature branch** (`git checkout -b feature/amazing-feature`)
3. **Write tests** for new functionality
4. **Ensure all tests pass** (`python run_all_tests.py`)
5. **Follow existing code style** (NumPy-style docstrings)
6. **Commit changes** (`git commit -m 'Add amazing feature'`)
7. **Push to branch** (`git push origin feature/amazing-feature`)
8. **Open a Pull Request**
### Code Style
- NumPy-style docstrings for all functions and classes
- Type hints where appropriate
- Comprehensive test coverage
- Clear, descriptive variable names
---
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
---
## Author
**@Ruppert20**
---
## AI Authorship Disclaimer
This package was developed with the assistance of LLM-based coding tools (Claude Code by Anthropic). AI tools were used for the following activities:
- **Code authorship** - Implementation of utilities, functions, and classes
- **Test development** - Creation of comprehensive unit tests
- **Documentation** - Generation of NumPy-style docstrings and README content
- **Code review** - Identification of bugs, edge cases, and improvements
Users should evaluate the code for their specific use cases and report any issues through the GitHub issue tracker.
---
## Acknowledgments
- Built with modern Python 3.13.2+
- Integrates with pandas, NumPy, Polars, and PyArrow
- Inspired by the need for clean, reusable utility functions
- Comprehensive testing ensures reliability
- Developed with assistance from Claude Code (Anthropic)
---
## Quick Links
- [๐ Full Documentation](src/)
- [๐งช Test Suite](UNIT_TESTS/)
- [๐ Test Results](UNIT_TESTS/TEST_SUMMARY.md)
- [๐ Requirements](requirements.txt)
- [๐ Issue Tracker](https://github.com/Ruppert20/CoreUtils-Python/issues)
---
**Made with โค๏ธ for the Python community**
Raw data
{
"_id": null,
"home_page": "https://github.com/Ruppert20/CoreUtils-Python",
"name": "CoreUtilities",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.13.2",
"maintainer_email": null,
"keywords": "utilities, data-science, pandas, numpy, encryption, serialization, testing, helpers",
"author": "@Ruppert20",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/64/e4/9b9fa4730efd21dae553dda2f02ea75e11b783272834ed0bf477d266e3bf/coreutilities-0.0.4.tar.gz",
"platform": null,
"description": "# CoreUtils-Python\n\nA comprehensive collection of Python utility functions and modules for data science, file operations, serialization, encryption, and general-purpose programming tasks.\n\n[](https://www.python.org/downloads/)\n[](LICENSE)\n[](UNIT_TESTS/)\n\n## Table of Contents\n\n- [Overview](#overview)\n- [Installation](#installation)\n- [Quick Start](#quick-start)\n- [Module Documentation](#module-documentation)\n - [Core Utilities](#core-utilities)\n - [Data Processing](#data-processing)\n - [Security & Encryption](#security--encryption)\n - [File Operations](#file-operations)\n - [Testing](#testing)\n- [Running Tests](#running-tests)\n- [Requirements](#requirements)\n- [Contributing](#contributing)\n- [License](#license)\n\n## Overview\n\nCoreUtils-Python is a modular collection of well-documented, tested utility functions designed to streamline common programming tasks across data science, system operations, and application development.\n\n**Key Features:**\n\n- \ud83d\udd27 **Comprehensive Utilities** - Functions, lists, strings, numbers, dictionaries\n- \ud83d\udcca **Data Processing** - pandas, NumPy, Polars, PyArrow integration\n- \ud83d\udd12 **Security** - Encryption, signing, secure serialization, CSV-compatible integrity\n- \ud83e\uddea **Well Tested** - 418+ unit tests with pytest\n- \ud83d\udcdd **Documented** - NumPy-style docstrings throughout\n- \u26a1 **Performance** - Optimized for large-scale data operations\n\n## Installation\n\n### Basic Installation\n\n```bash\n# Clone the repository\ngit clone https://github.com/Ruppert20/CoreUtils-Python.git\ncd CoreUtils-Python\n\n# Install dependencies\npip install -r requirements.txt\n```\n\n### Requirements\n\n- Python 3.13.2 or greater\n- See [requirements.txt](requirements.txt) for full dependency list\n\n## Quick Start\n\n```python\n# Import utilities\nfrom src.generics import notnull, coalesce\nfrom src.lists import chunk_list, flatten_list\nfrom src.strings import convert_identifier_case\nfrom src.numbers import extract_num, isfloat\nfrom src.signature import SignedFile\nfrom datetime import datetime\n\n# Use null checking\nif notnull(value):\n process(value)\n\n# Coalesce values\nresult = coalesce(None, '', default_value)\n\n# Chunk data for batch processing\nfor chunk in chunk_list(large_list, 100):\n process_batch(chunk)\n\n# Convert naming conventions\ncamel = convert_identifier_case('user_name', 'camelCase')\n\n# Write signed file with header metadata\nheader = {\"version\": \"1.0\", \"created\": datetime.now(), \"author\": \"alice\"}\nSignedFile.write(\"data.bin\", {\"key\": \"value\"}, header=header)\n\n# Write CSV with integrity signature (pandas-compatible)\ncsv_data = b\"name,age\\nAlice,30\\nBob,25\\n\"\nSignedFile.write(\"data.csv\", csv_data, signature_as_comment=True)\n\n# Read back with verification and header\ndata, meta = SignedFile.read(\"data.bin\", return_header=True)\nprint(f\"Created by {meta['author']} on {meta['created']}\")\n```\n\n## Module Documentation\n\n### Core Utilities\n\n#### generics.py\n\nGeneric utility functions for null handling and object operations.\n\n**Key Functions:**\n\n- `notnull(v)` - Comprehensive null checking (None, empty containers, pd.NA, np.nan)\n- `isnull(v)` - Inverse of notnull\n- `coalesce(*values)` - Return first non-null value\n- `get_name(obj)` - Extract object name\n\n[\ud83d\udcdd Code](src/generics.py) | [\ud83e\uddea Tests](UNIT_TESTS/test_generics.py) | [\ud83d\udcd6 Documentation](Documentation/generics.md)\n\n---\n\n#### functions.py\n\nFunction utilities including dynamic loading, introspection, and debugging.\n\n**Key Functions:**\n\n- `get_func(func_path)` - Dynamically load functions from string paths\n- `filter_kwargs(func, kwargs)` - Filter kwargs to match function parameters\n- `get_function_signature(func)` - Extract comprehensive function metadata\n- `inspect_class(cls)` - Extract class properties and methods\n- `is_pickleable(obj)` - Check if object can be pickled\n\n[\ud83d\udcdd Code](src/functions.py) | [\ud83e\uddea Tests](UNIT_TESTS/test_functions.py) | [\ud83d\udcd6 Documentation](Documentation/functions.md)\n\n---\n\n#### lists.py\n\nList manipulation utilities for chunking, intersection, and flattening.\n\n**Key Functions:**\n\n- `convert_list_to_string(lst, encapsulate=False)` - Convert list to comma-separated string\n- `chunk_list(lst, n)` - Split list into equal-sized chunks\n- `list_intersection(lst1, lst2)` - Find common elements preserving order\n- `flatten_list(nested)` - Recursively flatten nested lists\n\n[\ud83d\udcdd Code](src/lists.py) | [\ud83e\uddea Tests](UNIT_TESTS/test_lists.py) | [\ud83d\udcd6 Documentation](Documentation/lists.md)\n\n---\n\n#### strings.py\n\nString manipulation including case conversion, cleaning, and parsing.\n\n**Key Functions:**\n\n- `remove_illegal_characters(s, case='snake_case')` - Clean strings for identifiers\n- `convert_identifier_case(id, target_format)` - Convert between naming conventions\n- `snake_to_camel_case(s)` - Convert snake_case to camelCase\n- `camel_to_snake_case(s)` - Convert camelCase to snake_case\n- `get_file_name_components(path)` - Parse file paths into components\n- `tokenize_id(id_str, token_index)` - Split and extract tokens from IDs\n\n[\ud83d\udcdd Code](src/strings.py) | [\ud83e\uddea Tests](UNIT_TESTS/test_strings.py) | [\ud83d\udcd6 Documentation](Documentation/strings.md)\n\n---\n\n#### numbers.py\n\nNumerical operations, extraction, and validation.\n\n**Key Functions:**\n\n- `extract_num(input_str, return_pos=0)` - Extract numbers from strings\n- `isfloat(value)` - Check if value can be converted to float\n- `convert_to_comma_seperated_integer_list(val)` - Convert to comma-separated integers\n\n[\ud83d\udcdd Code](src/numbers.py) | [\ud83e\uddea Tests](UNIT_TESTS/test_numbers.py) | [\ud83d\udcd6 Documentation](Documentation/numbers.md)\n\n---\n\n#### dictionaries.py\n\nDictionary utilities for pandas aggregation operations.\n\n**Key Functions:**\n\n- `create_aggregation_dict(col_action_dict, start_col, end_col)` - Create pandas groupby aggregation dictionaries\n\n[\ud83d\udcdd Code](src/dictionaries.py) | [\ud83e\uddea Tests](UNIT_TESTS/test_dictionaries.py) | [\ud83d\udcd6 Documentation](Documentation/dictionaries.md)\n\n---\n\n#### git.py\n\nGit repository metadata extraction.\n\n**Key Functions:**\n\n- `get_git_metadata()` - Extract comprehensive git repository information\n\n[\ud83d\udcdd Code](src/git.py) | [\ud83d\udcd6 Documentation](Documentation/git.md)\n\n---\n\n### Data Processing\n\n#### core_types.py\n\nCross-library type classification and detection system.\n\n**Key Features:**\n\n- `CoreDataType` enum - Universal type classification\n- Type detection from objects and strings\n- Support for pandas, NumPy, Polars, PyArrow\n- String representation parsing (JSON, XML, UUID, dates)\n\n[\ud83d\udcdd Code](src/core_types.py) | [\ud83d\udcd6 Documentation](Documentation/core_types.md)\n\n---\n\n#### iterables.py\n\nMemory profiling and object analysis utilities.\n\n**Key Functions:**\n\n- `deep_stats(obj)` - Calculate deep memory size with cycle detection\n- `find_large_objects(obj, threshold_kb)` - Identify memory-intensive objects\n\n[\ud83d\udcdd Code](src/iterables.py) | [\ud83d\udcd6 Documentation](Documentation/iterables.md)\n\n---\n\n#### serialization.py\n\nExtended serialization with multi-format support (JSON, YAML, CBOR, Pickle).\n\n**Key Features:**\n\n- XSer class - Destination-aware serialization\n- Automatic fallback chain: Structured \u2192 CBOR \u2192 Pickle\n- NumPy array support\n- HDF5 and Parquet metadata support\n\n[\ud83d\udcdd Code](src/serialization.py) | [\ud83d\udcd6 Documentation](Documentation/serialization.md)\n\n---\n\n#### enhanced_logging.py\n\nAdvanced logging with emoji support, progress bars, and structured output.\n\n**Key Features:**\n\n- Enhanced logger with emoji integration\n- Progress bar support\n- Structured logging for metrics\n- Context managers for scoped logging\n\n[\ud83d\udcdd Code](src/enhanced_logging.py) | [\ud83d\udcd6 Documentation](Documentation/enhanced_logging.md)\n\n---\n\n#### parrallelization.py\n\nParallel processing utilities with comprehensive error handling.\n\n**Key Features:**\n\n- ParallelProcessor class\n- Support for serial, thread-based, and process-based execution\n- Metrics collection and reporting\n- Integration with enhanced logging\n\n[\ud83d\udcdd Code](src/parrallelization.py) | [\ud83d\udcd6 Documentation](Documentation/parrallelization.md)\n\n---\n\n### Security & Encryption\n\n#### encrypt.py\n\nEncryption utilities using Fernet symmetric encryption.\n\n**Key Features:**\n\n- Encryptor class for data encryption/decryption\n- CryptoYAML for encrypted YAML configuration files\n- Key generation and management\n\n[\ud83d\udcdd Code](src/encrypt.py) | [\ud83e\uddea Tests](UNIT_TESTS/test_encrypt.py) | [\ud83d\udcd6 Documentation](Documentation/encrypt.md)\n\n---\n\n#### signature.py\n\nAtomic file writing with cryptographic integrity verification, encryption, and metadata support.\n\n**Key Features:**\n\n- SignedFile class for signed file operations\n- SHA-256/HMAC-SHA256 signatures with integrity verification\n- Optional Fernet encryption with authenticated HMAC\n- **Python object serialization** (via XSer) - auto-serializes dicts, lists, numpy, datetime\n- **Optional header metadata** - Store version info, timestamps, and structured metadata\n- **CSV-compatible commented signatures** - Write `#` comment signatures for pandas/Excel compatibility\n- Atomic writes with platform-independent fsync\n- Chunked reading for large files\n\n[\ud83d\udcdd Code](src/signature.py) | [\ud83e\uddea Tests](UNIT_TESTS/test_signature.py) | [\ud83d\udcd6 Documentation](Documentation/signature.md)\n\n---\n\n### File Operations\n\n#### search.py\n\nFlexible file search utilities with pattern matching and filtering.\n\n**Key Features:**\n\n- FileSearcher class for advanced file searching\n- Pattern matching with regex support\n- File type filtering and exclusion patterns\n- Recursive and non-recursive search modes\n\n[\ud83d\udcdd Code](src/search.py) | [\ud83e\uddea Tests](UNIT_TESTS/test_search.py) | [\ud83d\udcd6 Documentation](Documentation/search.md)\n\n---\n\n### Testing\n\n#### debugging.py\n\nTesting utilities for random data generation.\n\n**Key Functions:**\n\n- `generate_random_sequence(dtype, n, percent_null, seed)` - Generate deterministic test data\n- Random generators for all common data types (TEXT, UUID, INTEGER, FLOAT, DATE, JSON, XML, etc.)\n- `debug_print(*args)` - Print debug output with visual separators\n\n[\ud83d\udcdd Code](src/debugging.py) | [\ud83e\uddea Tests](UNIT_TESTS/test_debugging.py) | [\ud83d\udcd6 Documentation](Documentation/debugging.md)\n\n---\n\n## Running Tests\n\nAll tests use pytest and follow the `test_*.py` naming convention.\n\n### Run All Tests\n\n```bash\ncd UNIT_TESTS\npython run_all_tests.py\n```\n\n### Run with Verbose Output\n\n```bash\npython run_all_tests.py -v\n```\n\n### Run with Coverage\n\n```bash\npython run_all_tests.py --coverage\n```\n\n### Run Specific Tests\n\n```bash\n# Run tests matching a pattern\npython run_all_tests.py -k test_generics\n\n# Run a specific test file\npytest test_functions.py -v\n\n# Run a specific test class\npytest test_functions.py::TestGetFunc -v\n\n# Run a specific test method\npytest test_functions.py::TestGetFunc::test_get_builtin_function -v\n```\n\n### Test Statistics\n\n- **Total Tests:** 223+\n- **Coverage:** Comprehensive coverage of public APIs\n- **Frameworks:** pytest (supports both pytest and unittest styles)\n- **Status:** \u2705 All tests passing\n\n[\ud83d\udcd6 View Test Documentation](UNIT_TESTS/README.md) | [\ud83d\udcca View Test Summary](UNIT_TESTS/TEST_SUMMARY.md)\n\n---\n\n## Requirements\n\n### Core Dependencies\n\n```\nnumpy>=2.3.2 # Numerical computing\npandas>=2.2.3 # Data manipulation\n```\n\n### Serialization\n\n```\ncbor2>=5.7.0 # CBOR encoding\nPyYAML>=6.0.2 # YAML support\n```\n\n### Security\n\n```\ncryptography>=45.0.7 # Encryption and signing\n```\n\n### Testing\n\n```\npytest>=8.4.2 # Test framework\npytest-cov>=4.1.0 # Coverage plugin\n```\n\n[\ud83d\udcd6 View Full Requirements](requirements.txt)\n\n---\n\n## Project Structure\n\n```\nCoreUtils-Python/\n\u251c\u2500\u2500 src/ # Source modules\n\u2502 \u251c\u2500\u2500 core_types.py # Type classification system\n\u2502 \u251c\u2500\u2500 debugging.py # Testing and debugging utilities\n\u2502 \u251c\u2500\u2500 dictionaries.py # Dictionary operations\n\u2502 \u251c\u2500\u2500 encrypt.py # Encryption utilities\n\u2502 \u251c\u2500\u2500 encrypted_signature.py # Combined encryption + signing\n\u2502 \u251c\u2500\u2500 enhanced_logging.py # Advanced logging\n\u2502 \u251c\u2500\u2500 functions.py # Function utilities\n\u2502 \u251c\u2500\u2500 generics.py # Generic utilities\n\u2502 \u251c\u2500\u2500 git.py # Git metadata\n\u2502 \u251c\u2500\u2500 iterables.py # Memory profiling\n\u2502 \u251c\u2500\u2500 lists.py # List operations\n\u2502 \u251c\u2500\u2500 numbers.py # Numerical utilities\n\u2502 \u251c\u2500\u2500 parrallelization.py # Parallel processing\n\u2502 \u251c\u2500\u2500 search.py # Search utilities\n\u2502 \u251c\u2500\u2500 serialization.py # Extended serialization\n\u2502 \u251c\u2500\u2500 signature.py # File signing\n\u2502 \u2514\u2500\u2500 strings.py # String manipulation\n\u2502\n\u251c\u2500\u2500 UNIT_TESTS/ # Test suite\n\u2502 \u251c\u2500\u2500 test_*.py # Test modules (223+ tests)\n\u2502 \u251c\u2500\u2500 run_all_tests.py # Test runner\n\u2502 \u251c\u2500\u2500 README.md # Test documentation\n\u2502 \u2514\u2500\u2500 TEST_SUMMARY.md # Test results summary\n\u2502\n\u251c\u2500\u2500 requirements.txt # Project dependencies\n\u2514\u2500\u2500 README.md # This file\n```\n\n---\n\n## Contributing\n\nContributions are welcome! Please follow these guidelines:\n\n1. **Fork the repository**\n2. **Create a feature branch** (`git checkout -b feature/amazing-feature`)\n3. **Write tests** for new functionality\n4. **Ensure all tests pass** (`python run_all_tests.py`)\n5. **Follow existing code style** (NumPy-style docstrings)\n6. **Commit changes** (`git commit -m 'Add amazing feature'`)\n7. **Push to branch** (`git push origin feature/amazing-feature`)\n8. **Open a Pull Request**\n\n### Code Style\n\n- NumPy-style docstrings for all functions and classes\n- Type hints where appropriate\n- Comprehensive test coverage\n- Clear, descriptive variable names\n\n---\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n---\n\n## Author\n\n**@Ruppert20**\n\n---\n\n## AI Authorship Disclaimer\n\nThis package was developed with the assistance of LLM-based coding tools (Claude Code by Anthropic). AI tools were used for the following activities:\n\n- **Code authorship** - Implementation of utilities, functions, and classes\n- **Test development** - Creation of comprehensive unit tests\n- **Documentation** - Generation of NumPy-style docstrings and README content\n- **Code review** - Identification of bugs, edge cases, and improvements\n\nUsers should evaluate the code for their specific use cases and report any issues through the GitHub issue tracker.\n\n---\n\n## Acknowledgments\n\n- Built with modern Python 3.13.2+\n- Integrates with pandas, NumPy, Polars, and PyArrow\n- Inspired by the need for clean, reusable utility functions\n- Comprehensive testing ensures reliability\n- Developed with assistance from Claude Code (Anthropic)\n\n---\n\n## Quick Links\n\n- [\ud83d\udcd6 Full Documentation](src/)\n- [\ud83e\uddea Test Suite](UNIT_TESTS/)\n- [\ud83d\udcca Test Results](UNIT_TESTS/TEST_SUMMARY.md)\n- [\ud83d\udccb Requirements](requirements.txt)\n- [\ud83d\udc1b Issue Tracker](https://github.com/Ruppert20/CoreUtils-Python/issues)\n\n---\n\n**Made with \u2764\ufe0f for the Python community**\n",
"bugtrack_url": null,
"license": null,
"summary": "A comprehensive collection of Python utility functions for data science, file operations, and general-purpose programming",
"version": "0.0.4",
"project_urls": {
"Bug Tracker": "https://github.com/Ruppert20/CoreUtils-Python/issues",
"Documentation": "https://github.com/Ruppert20/CoreUtils-Python",
"Homepage": "https://github.com/Ruppert20/CoreUtils-Python",
"Source Code": "https://github.com/Ruppert20/CoreUtils-Python"
},
"split_keywords": [
"utilities",
" data-science",
" pandas",
" numpy",
" encryption",
" serialization",
" testing",
" helpers"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "64e49b9fa4730efd21dae553dda2f02ea75e11b783272834ed0bf477d266e3bf",
"md5": "d7281440bce1d531be422079528d8faf",
"sha256": "2c757b88b5ba91ec39b6a09809643f41e8577f6441649c34d751c528d8b0107c"
},
"downloads": -1,
"filename": "coreutilities-0.0.4.tar.gz",
"has_sig": false,
"md5_digest": "d7281440bce1d531be422079528d8faf",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.13.2",
"size": 84919,
"upload_time": "2025-11-07T20:53:32",
"upload_time_iso_8601": "2025-11-07T20:53:32.562714Z",
"url": "https://files.pythonhosted.org/packages/64/e4/9b9fa4730efd21dae553dda2f02ea75e11b783272834ed0bf477d266e3bf/coreutilities-0.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-11-07 20:53:32",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Ruppert20",
"github_project": "CoreUtils-Python",
"github_not_found": true,
"lcname": "coreutilities"
}