CorrDim-By-Bisca


NameCorrDim-By-Bisca JSON
Version 0.0.3 PyPI version JSON
download
home_page
SummaryPython module for dimensionality analysis using CorrDim and related algorithms
upload_time2024-02-09 20:47:09
maintainer
docs_urlNone
authorEng. Alberto Biscalchin
requires_python
license
keywords correlation dimension corrdim algorithm fractal analysis chaos theory data analysis numpy scipy multidimensional scaling time-series analysis packing numbers local dimension
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            This Python module provides robust methods for estimating the Correlation Dimension of any given dataset, leveraging the CorrDim algorithm, and includes additional functions such as packing_numbers and local_dim for comprehensive dimensionality analysis. Suitable for applications in fractal dimensions, chaos theory, and complex data analysis.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "CorrDim-By-Bisca",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "correlation dimension,CorrDim algorithm,fractal analysis,chaos theory,data analysis,NumPy,SciPy,multidimensional scaling,time-series analysis,packing numbers,local dimension",
    "author": "Eng. Alberto Biscalchin",
    "author_email": "biscalchin.mau.se@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/d3/83/5c134f9f8a03d43b1c2f9bc6da78405309fc53b3efb63ef809f18cce8d5a/CorrDim_By_Bisca-0.0.3.tar.gz",
    "platform": null,
    "description": "This Python module provides robust methods for estimating the Correlation Dimension of any given dataset, leveraging the CorrDim algorithm, and includes additional functions such as packing_numbers and local_dim for comprehensive dimensionality analysis. Suitable for applications in fractal dimensions, chaos theory, and complex data analysis.\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Python module for dimensionality analysis using CorrDim and related algorithms",
    "version": "0.0.3",
    "project_urls": null,
    "split_keywords": [
        "correlation dimension",
        "corrdim algorithm",
        "fractal analysis",
        "chaos theory",
        "data analysis",
        "numpy",
        "scipy",
        "multidimensional scaling",
        "time-series analysis",
        "packing numbers",
        "local dimension"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7ba7b49f58039a80ad5954fc79481b05225c920e9260159c9c485e18404104f4",
                "md5": "fa4d7419bc832f379d3bacd2c3bedc2e",
                "sha256": "5b5d9b02483e2a47cedd348c2cba7a5c260101f479ac8d153ef0cdcda652c681"
            },
            "downloads": -1,
            "filename": "CorrDim_By_Bisca-0.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fa4d7419bc832f379d3bacd2c3bedc2e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 18383,
            "upload_time": "2024-02-09T20:47:07",
            "upload_time_iso_8601": "2024-02-09T20:47:07.982995Z",
            "url": "https://files.pythonhosted.org/packages/7b/a7/b49f58039a80ad5954fc79481b05225c920e9260159c9c485e18404104f4/CorrDim_By_Bisca-0.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d3835c134f9f8a03d43b1c2f9bc6da78405309fc53b3efb63ef809f18cce8d5a",
                "md5": "fdb8e0bd76252d3dcb202bc29c69d71e",
                "sha256": "0768db4deb448144cc7422aa56ff2af3d5a78331ae814bc6056163a8c8e068c5"
            },
            "downloads": -1,
            "filename": "CorrDim_By_Bisca-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "fdb8e0bd76252d3dcb202bc29c69d71e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 17889,
            "upload_time": "2024-02-09T20:47:09",
            "upload_time_iso_8601": "2024-02-09T20:47:09.575132Z",
            "url": "https://files.pythonhosted.org/packages/d3/83/5c134f9f8a03d43b1c2f9bc6da78405309fc53b3efb63ef809f18cce8d5a/CorrDim_By_Bisca-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-09 20:47:09",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "corrdim-by-bisca"
}
        
Elapsed time: 4.85536s