DDesignerAPI


NameDDesignerAPI JSON
Version 0.0.6.0 PyPI version JSON
download
home_pagehttps://github.com/DPI/DDesigner
SummaryDeep-learning Designer: Deep-Learning Training Optimization & Layers API(like Keras)
upload_time2023-12-26 09:23:01
maintainer
docs_urlNone
authorDeeper-I
requires_python>=3.7
licenseApache-2.0, BSD3-Clause
keywords xwn pytorch tensorflow keras
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [DDesigner API] Deep-learning Designer API
==========================================

# 1. About
## 1.1. DDesignerAPI?
It is a API for deep-learning learning and inference, and an API for application development using multi-platform

## 1.2. Functions
### 1.2.1. Layers and Blocks
* Accelerator enabled layers and the ability to define special layers that are not defined in Keras and others
* A function that defines a combination of layers as a block and easily composes a block (ex. CONV + BN + ACT + DROPOUT= ConvBlock)

### 1.2.2. Optimization for Accelerator Usage (XWN)
* Optimized function to use accelerator
<br/><br/><br/>
  
# 2. Support
## 2.1. Platforms
* Tensorflow 2.6.0
* PyTorch 1.13.1

## 2.2. Components of Network 
### 2.2.1. Layers
* Accelerator enabled layers and Custom layers that perform specific functions
#### 2.2.1.1. Summary
|Operation|Support Train Platform|Support TACHY Accelerator|
|:---:|:---:|:---:|
|**Convolution**|TF / Keras / PyTorch|O|
|**TransposeConvolution**|TF / Keras / PyTorch|O|
|**CascadeConvolution**|Keras / PyTorch|O|
#### 2.2.1.2. Detail
* Convolution           : 1D, 2D with XWN optimization
* TransposeConvolution  : 1D, 2D with XWN optimization
* CascadeConvolution    : A Layer that decomposes a layer with large kernel into multiple layers with smaller kernels to lighten the model / 1D, 2D with XWN optimization
<br/><br/>
### 2.2.2. Blocks
* A set of defined layers for user convenience
#### 2.2.2.1. Summary
|Platform|ConvBlock|TConvBlock|FCBlock|
|:---:|:---:|:---:|:---:|
|**TF-Keras**|1D/2D|2D|TODO|
|**PyTorch**|TODO|TODO|TODO|
#### 2.2.2.2. Detail
* ConvBlock         : Convolution N-D Block (CONV + BN + ACT + DROPOUT), support Conv1DBlock, Conv2DBlock
* TConvBlock        : Transpose Convolution 2D Block (TCONV + BN + ACT + DROPOUT), support TConv2DBlock
* CascadeConvBlock  : Cascade Convolution N-D Block (CONV + BN + ACT + DROPOUT), support CascadeConv1DBlock, CascadeConv2DBlock
<br/><br/>
## 2.3. XWN (**Applies only to convolution operations**)
### 2.3.1. Transform Configuration (data type / default value / description) 
* transform     : bool  / False / Choose whether to use
* bit           : int   / 4     / Quantization range (bit-1 ** 2)
* max_scale     : float / 4.0   / Max value
### 2.3.2. Pruning Configuration
* pruning       : bool  / False / Choose whether to use
* prun_weight   : float / 0.5   / Weights for puning edge generation
### 2.3.3. Summary
|Platform|Conv|TransposeConv|CascadeConv|
|:---:|:---:|:---:|:---:|
|**TF**|1D/2D|1D/2D|TODO|
|**Keras**|1D/2D|1D/2D|TODO|
|**PyTorch**|1D/2D|1D/2D|1D/2D|

<br/><br/>

# 3. Command Usage
## 3.1. XWN 
### 3.1.1. Single Convolution 
### 3.1.1.1. Tensorflow
        >>> from ddesigner_api.tensorflow.xwn import tf_nn as nn
        >>> nn.conv2d(
                x,
                kernel,
                ...
                use_transform=True,
                bit=4,
                max_scale=4.0,
                use_pruning=False
            )
### 3.1.1.2. Keras
        >>> from ddesigner_api.tensorflow.xwn import keras_layers as klayers
        >>> klayers.Conv2D(
                2, 3, 
                ...
                use_transform=True,
                bit=4,
                max_scale=4.0
                use_pruning=True,
                prun_weight=0.5
            )

### 3.1.1.3. PyTorch
        >>> from ddesigner_api.pytorch.xwn import torch_nn as nn
        >>> nn.Conv2d(
                in_channels=1,
                out_channels=2,
                ...
                use_transform=True,
                bit=4,
                max_scale=4.0,
                use_pruning=False
            )

### 3.1.2. Custum Layer and Block (CascadeConv, ...)
### 3.1.2.1. Keras
        >>> from ddesigner_api.tensorflow import dpi_layers as dlayers
        >>> dlayers.CascadeConv2d(
                2, 3, 
                ...
                transform=4,
                max_scale=4.0,
                pruning=None,
            )

### 3.1.2.2. PyTorch
        >>> from ddesigner_api.pytorch import dpi_nn as dnn
        >>> dnn.CascadeConv2d(
                16, # in_channels 
                32, # out_channels
                7, # kernel_size
                stride=(1,1), 
                bias=False,
                ...
                transform=4,
                max_scale=4.0,
                pruning=None,
            )

<br/>

## 3.2. Blocks  
### 3.2.1. Keras
#### 3.2.1.1. Conv1DBlock
        >>> from ddesigner_api.tensorflow import dpi_blocks as db
        >>> dtype='mixed_float16'
        >>> db.Conv1DBlock(
                64, 3, strides=1, padding='SAME', use_bias=False,
                activation=tf.keras.layers.ReLU(dtype=dtype), 
                batchnormalization=tf.keras.layers.BatchNormalization(dtype=dtype), 
                dtype=dtype,
                transform=4, max_scale=4.0,
                pruning=0.5
            )
#### 3.2.1.2. Conv2DBlock
        >>> from ddesigner_api.tensorflow import dpi_blocks as db
        >>> dtype='mixed_float16'
        >>> db.Conv2DBlock(
                64, (3,3), strides=(1,1), padding='SAME', use_bias=False,
                activation=tf.keras.layers.ReLU(dtype=dtype), 
                batchnormalization=tf.keras.layers.BatchNormalization(dtype=dtype), 
                dtype=dtype,
                transform=4, max_scale=4.0,
                pruning=0.5
            )
#### 3.2.1.3. TConv2DBlock
        >>> from ddesigner_api.tensorflow import dpi_blocks as db
        >>> dtype='mixed_float16'
        >>> db.TConv2DBlock(
                64, (3,3), strides=(2,2), padding='SAME', use_bias=False,
                activation=tf.keras.layers.ReLU(dtype=dtype), 
                batchnormalization=tf.keras.layers.BatchNormalization(dtype=dtype), 
                dtype=dtype,
                transform=4, max_scale=4.0,
                pruning=0.5
            )
<br/>

## 3.3. Examples
* An example of comparing and printing results before optimization(XWN) and after XWN for the same input on a supported platform.
### 3.3.1. Tensorflow
        >>> import ddesigner_api.tensorflow.examples.examples_tensorflow as ex
        >>> ex.main()
        >>> ====== TENSORFLOW Examples======
        >>> 1: Fixed  Float32 Input Conv2D
        >>> q: Quit
        >>> Select Case: ...

### 3.3.2. Keras
        >>> import ddesigner_api.tensorflow.examples.examples_keras as ex
        >>> ex.main()
        >>> ====== KERAS Examples======
        >>> 1: Fixed  Float32 Input Conv2D
        >>> 2: Random Float32 Input Conv2D
        >>> 3: Random Float32 Input Conv2DTranspose
        >>> 4: Random Float16 Input Conv2D
        >>> q: Quit
        >>> Select Case: ...

### 3.3.3. PyTorch
        >>> import ddesigner_api.pytorch.examples.examples_pytorch as ex
        >>> ex.main()
        >>> ====== PYTORCH Examples======
        >>> 1: Fixed  Float32 Input Conv2D
        >>> 2: Random Float32 Input Conv2D
        >>> 3: Fixed  Float32 Input Conv1D
        >>> 4: Fixed  Float32 Input Conv1DTranspose
        >>> 5: Random Float32 Input CascadeConv2D
        >>> 6: Random Float32 Input CascadeConv1D
        >>> q: Quit
        >>> Select Case: ...

### 3.3.4. Numpy
        >>> import ddesigner_api.numpy.examples.examples_numpy as ex
        >>> ex.main()
        >>> ====== NUMPY Examples======
        >>> 1: XWN Transform
        >>> 2: XWN Transform and Pruning
        >>> q: Quit
        >>> Select Case: ...

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/DPI/DDesigner",
    "name": "DDesignerAPI",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "xwn,pytorch,tensorflow,keras",
    "author": "Deeper-I",
    "author_email": "dean@deeper-i.com",
    "download_url": "",
    "platform": null,
    "description": "[DDesigner API] Deep-learning Designer API\n==========================================\n\n# 1. About\n## 1.1. DDesignerAPI?\nIt is a API for deep-learning learning and inference, and an API for application development using multi-platform\n\n## 1.2. Functions\n### 1.2.1. Layers and Blocks\n* Accelerator enabled layers and the ability to define special layers that are not defined in Keras and others\n* A function that defines a combination of layers as a block and easily composes a block (ex. CONV + BN + ACT + DROPOUT= ConvBlock)\n\n### 1.2.2. Optimization for Accelerator Usage (XWN)\n* Optimized function to use accelerator\n<br/><br/><br/>\n  \n# 2. Support\n## 2.1. Platforms\n* Tensorflow 2.6.0\n* PyTorch 1.13.1\n\n## 2.2. Components of Network \n### 2.2.1. Layers\n* Accelerator enabled layers and Custom layers that perform specific functions\n#### 2.2.1.1. Summary\n|Operation|Support Train Platform|Support TACHY Accelerator|\n|:---:|:---:|:---:|\n|**Convolution**|TF / Keras / PyTorch|O|\n|**TransposeConvolution**|TF / Keras / PyTorch|O|\n|**CascadeConvolution**|Keras / PyTorch|O|\n#### 2.2.1.2. Detail\n* Convolution           : 1D, 2D with XWN optimization\n* TransposeConvolution  : 1D, 2D with XWN optimization\n* CascadeConvolution    : A Layer that decomposes a layer with large kernel into multiple layers with smaller kernels to lighten the model / 1D, 2D with XWN optimization\n<br/><br/>\n### 2.2.2. Blocks\n* A set of defined layers for user convenience\n#### 2.2.2.1. Summary\n|Platform|ConvBlock|TConvBlock|FCBlock|\n|:---:|:---:|:---:|:---:|\n|**TF-Keras**|1D/2D|2D|TODO|\n|**PyTorch**|TODO|TODO|TODO|\n#### 2.2.2.2. Detail\n* ConvBlock         : Convolution N-D Block (CONV + BN + ACT + DROPOUT), support Conv1DBlock, Conv2DBlock\n* TConvBlock        : Transpose Convolution 2D Block (TCONV + BN + ACT + DROPOUT), support TConv2DBlock\n* CascadeConvBlock  : Cascade Convolution N-D Block (CONV + BN + ACT + DROPOUT), support CascadeConv1DBlock, CascadeConv2DBlock\n<br/><br/>\n## 2.3. XWN (**Applies only to convolution operations**)\n### 2.3.1. Transform Configuration (data type / default value / description) \n* transform     : bool  / False / Choose whether to use\n* bit           : int   / 4     / Quantization range (bit-1 ** 2)\n* max_scale     : float / 4.0   / Max value\n### 2.3.2. Pruning Configuration\n* pruning       : bool  / False / Choose whether to use\n* prun_weight   : float / 0.5   / Weights for puning edge generation\n### 2.3.3. Summary\n|Platform|Conv|TransposeConv|CascadeConv|\n|:---:|:---:|:---:|:---:|\n|**TF**|1D/2D|1D/2D|TODO|\n|**Keras**|1D/2D|1D/2D|TODO|\n|**PyTorch**|1D/2D|1D/2D|1D/2D|\n\n<br/><br/>\n\n# 3. Command Usage\n## 3.1. XWN \n### 3.1.1. Single Convolution \n### 3.1.1.1. Tensorflow\n        >>> from ddesigner_api.tensorflow.xwn import tf_nn as nn\n        >>> nn.conv2d(\n                x,\n                kernel,\n                ...\n                use_transform=True,\n                bit=4,\n                max_scale=4.0,\n                use_pruning=False\n            )\n### 3.1.1.2. Keras\n        >>> from ddesigner_api.tensorflow.xwn import keras_layers as klayers\n        >>> klayers.Conv2D(\n                2, 3, \n                ...\n                use_transform=True,\n                bit=4,\n                max_scale=4.0\n                use_pruning=True,\n                prun_weight=0.5\n            )\n\n### 3.1.1.3. PyTorch\n        >>> from ddesigner_api.pytorch.xwn import torch_nn as nn\n        >>> nn.Conv2d(\n                in_channels=1,\n                out_channels=2,\n                ...\n                use_transform=True,\n                bit=4,\n                max_scale=4.0,\n                use_pruning=False\n            )\n\n### 3.1.2. Custum Layer and Block (CascadeConv, ...)\n### 3.1.2.1. Keras\n        >>> from ddesigner_api.tensorflow import dpi_layers as dlayers\n        >>> dlayers.CascadeConv2d(\n                2, 3, \n                ...\n                transform=4,\n                max_scale=4.0,\n                pruning=None,\n            )\n\n### 3.1.2.2. PyTorch\n        >>> from ddesigner_api.pytorch import dpi_nn as dnn\n        >>> dnn.CascadeConv2d(\n                16, # in_channels \n                32, # out_channels\n                7, # kernel_size\n                stride=(1,1), \n                bias=False,\n                ...\n                transform=4,\n                max_scale=4.0,\n                pruning=None,\n            )\n\n<br/>\n\n## 3.2. Blocks  \n### 3.2.1. Keras\n#### 3.2.1.1. Conv1DBlock\n        >>> from ddesigner_api.tensorflow import dpi_blocks as db\n        >>> dtype='mixed_float16'\n        >>> db.Conv1DBlock(\n                64, 3, strides=1, padding='SAME', use_bias=False,\n                activation=tf.keras.layers.ReLU(dtype=dtype), \n                batchnormalization=tf.keras.layers.BatchNormalization(dtype=dtype), \n                dtype=dtype,\n                transform=4, max_scale=4.0,\n                pruning=0.5\n            )\n#### 3.2.1.2. Conv2DBlock\n        >>> from ddesigner_api.tensorflow import dpi_blocks as db\n        >>> dtype='mixed_float16'\n        >>> db.Conv2DBlock(\n                64, (3,3), strides=(1,1), padding='SAME', use_bias=False,\n                activation=tf.keras.layers.ReLU(dtype=dtype), \n                batchnormalization=tf.keras.layers.BatchNormalization(dtype=dtype), \n                dtype=dtype,\n                transform=4, max_scale=4.0,\n                pruning=0.5\n            )\n#### 3.2.1.3. TConv2DBlock\n        >>> from ddesigner_api.tensorflow import dpi_blocks as db\n        >>> dtype='mixed_float16'\n        >>> db.TConv2DBlock(\n                64, (3,3), strides=(2,2), padding='SAME', use_bias=False,\n                activation=tf.keras.layers.ReLU(dtype=dtype), \n                batchnormalization=tf.keras.layers.BatchNormalization(dtype=dtype), \n                dtype=dtype,\n                transform=4, max_scale=4.0,\n                pruning=0.5\n            )\n<br/>\n\n## 3.3. Examples\n* An example of comparing and printing results before optimization(XWN) and after XWN for the same input on a supported platform.\n### 3.3.1. Tensorflow\n        >>> import ddesigner_api.tensorflow.examples.examples_tensorflow as ex\n        >>> ex.main()\n        >>> ====== TENSORFLOW Examples======\n        >>> 1: Fixed  Float32 Input Conv2D\n        >>> q: Quit\n        >>> Select Case: ...\n\n### 3.3.2. Keras\n        >>> import ddesigner_api.tensorflow.examples.examples_keras as ex\n        >>> ex.main()\n        >>> ====== KERAS Examples======\n        >>> 1: Fixed  Float32 Input Conv2D\n        >>> 2: Random Float32 Input Conv2D\n        >>> 3: Random Float32 Input Conv2DTranspose\n        >>> 4: Random Float16 Input Conv2D\n        >>> q: Quit\n        >>> Select Case: ...\n\n### 3.3.3. PyTorch\n        >>> import ddesigner_api.pytorch.examples.examples_pytorch as ex\n        >>> ex.main()\n        >>> ====== PYTORCH Examples======\n        >>> 1: Fixed  Float32 Input Conv2D\n        >>> 2: Random Float32 Input Conv2D\n        >>> 3: Fixed  Float32 Input Conv1D\n        >>> 4: Fixed  Float32 Input Conv1DTranspose\n        >>> 5: Random Float32 Input CascadeConv2D\n        >>> 6: Random Float32 Input CascadeConv1D\n        >>> q: Quit\n        >>> Select Case: ...\n\n### 3.3.4. Numpy\n        >>> import ddesigner_api.numpy.examples.examples_numpy as ex\n        >>> ex.main()\n        >>> ====== NUMPY Examples======\n        >>> 1: XWN Transform\n        >>> 2: XWN Transform and Pruning\n        >>> q: Quit\n        >>> Select Case: ...\n",
    "bugtrack_url": null,
    "license": "Apache-2.0, BSD3-Clause",
    "summary": "Deep-learning Designer: Deep-Learning Training Optimization & Layers API(like Keras)",
    "version": "0.0.6.0",
    "project_urls": {
        "Homepage": "https://github.com/DPI/DDesigner"
    },
    "split_keywords": [
        "xwn",
        "pytorch",
        "tensorflow",
        "keras"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "00357d9c2868d1acd763916f1c3929db17ddc808f093d8180f94e490eab074ea",
                "md5": "07db47275fd32a337b1ceb628c89350d",
                "sha256": "621f525546b60e1f1360122b2c9b5601886a239c544d558b445ca8d6ab38e492"
            },
            "downloads": -1,
            "filename": "DDesignerAPI-0.0.6.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "07db47275fd32a337b1ceb628c89350d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 66111,
            "upload_time": "2023-12-26T09:23:01",
            "upload_time_iso_8601": "2023-12-26T09:23:01.603735Z",
            "url": "https://files.pythonhosted.org/packages/00/35/7d9c2868d1acd763916f1c3929db17ddc808f093d8180f94e490eab074ea/DDesignerAPI-0.0.6.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-26 09:23:01",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "DPI",
    "github_project": "DDesigner",
    "github_not_found": true,
    "lcname": "ddesignerapi"
}
        
Elapsed time: 0.19639s