DankCord


NameDankCord JSON
Version 0.0.2.5 PyPI version JSON
download
home_page
SummaryThe first python library for Dank Memer selfbots. Incredibly fast, secure, strong, and reliable.
upload_time2023-01-03 16:58:58
maintainer
docs_urlNone
author
requires_python
licenseMIT
keywords bot automation discord discord-bot dank-memer dankmemer dank-memer-farm dank-memer-farmer dank-memer-coins dank-memer-coins-farmer
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ![DankCord](https://raw.githubusercontent.com/Sxvxgee/DankCord/master/assets/DankCord.png)

[![Discord Server](https://discord.com/api/guilds/1046759026807013376/embed.png)](https://discord.gg/XaQ6FAP3sm/)
[![PyPi version](https://img.shields.io/pypi/v/DankCord.svg)](https://pypi.org/user/Sxvxge/)
[![PyPI download month](https://img.shields.io/pypi/dm/DankCord.svg)](https://pypi.org/user/Sxvxge/)

# DankCord - The first python library for Dank Memer selfbots!
My vision for this library is to be able to help people create their very own selfbots related to Dank Memer, and even create autofarms based on this library, instead of having to use other libraries such as `discord.py-self` as others can be slow, use lots of memory, and the user would have to code many things on their own from scratch.

# Installing
```sh
# linux/macOS
python3 -m pip install -U DankCord

# windows
pip install -U DankCord
```
To install the Github version, do the following:
```sh
$ git clone https://github.com/Sxvxgee/DankCord
$ cd DankCord
$ python3 -m pip install -U .
```
# Quick Example
```py
from typing import Optional

from DankCord import Client, Config
from DankCord.Objects import Message
from pyloggor import pyloggor

bot = Client(
    Config("TOKEN", 00000000000), # Second argument is channel ID, must be int
    pyloggor(
        show_file=False,
        show_topic=False,
        show_symbol=False,
        show_time=False,
        title_level=True,
        level_adjustment_space=9,
    ),
)
message: Optional[Message] = bot.core.fish()
message: Optional[Message] = bot.core.beg()
message: Optional[Message] = bot.core.hunt()
message: Optional[Message] = bot.run_command(name = "settings")
message: Optional[Message] = bot.run_sub_command(name = "advancements", sub_name = "prestige")
```

# Links
- [Discord](https://discord.gg/XaQ6FAP3sm)
- [Trello board](https://trello.com/b/0M9SDJH6/dankcord)
- Documentation: coming soon.

# Special thanks
- [ThePrivatePanda](https://github.com/ThePrivatePanda): An ex-maintainer of the project.
- All our other contributors, DankCord wouldn't have been what it is today without them.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "DankCord",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "sxvxge69@gmail.com, contact@privatepanda.co",
    "keywords": "bot,automation,discord,discord-bot,dank-memer,dankmemer,dank-memer-farm,dank-memer-farmer,dank-memer-coins,dank-memer-coins-farmer",
    "author": "",
    "author_email": "sxvxge69@gmail.com, contact@privatepanda.co",
    "download_url": "https://files.pythonhosted.org/packages/97/85/ef6d8a75f430edec6b19b0935ee21cd1863244080bbb9d3e68eab31d962c/DankCord-0.0.2.5.tar.gz",
    "platform": null,
    "description": "![DankCord](https://raw.githubusercontent.com/Sxvxgee/DankCord/master/assets/DankCord.png)\n\n[![Discord Server](https://discord.com/api/guilds/1046759026807013376/embed.png)](https://discord.gg/XaQ6FAP3sm/)\n[![PyPi version](https://img.shields.io/pypi/v/DankCord.svg)](https://pypi.org/user/Sxvxge/)\n[![PyPI download month](https://img.shields.io/pypi/dm/DankCord.svg)](https://pypi.org/user/Sxvxge/)\n\n# DankCord - The first python library for Dank Memer selfbots!\nMy vision for this library is to be able to help people create their very own selfbots related to Dank Memer, and even create autofarms based on this library, instead of having to use other libraries such as `discord.py-self` as others can be slow, use lots of memory, and the user would have to code many things on their own from scratch.\n\n# Installing\n```sh\n# linux/macOS\npython3 -m pip install -U DankCord\n\n# windows\npip install -U DankCord\n```\nTo install the Github version, do the following:\n```sh\n$ git clone https://github.com/Sxvxgee/DankCord\n$ cd DankCord\n$ python3 -m pip install -U .\n```\n# Quick Example\n```py\nfrom typing import Optional\n\nfrom DankCord import Client, Config\nfrom DankCord.Objects import Message\nfrom pyloggor import pyloggor\n\nbot = Client(\n    Config(\"TOKEN\", 00000000000), # Second argument is channel ID, must be int\n    pyloggor(\n        show_file=False,\n        show_topic=False,\n        show_symbol=False,\n        show_time=False,\n        title_level=True,\n        level_adjustment_space=9,\n    ),\n)\nmessage: Optional[Message] = bot.core.fish()\nmessage: Optional[Message] = bot.core.beg()\nmessage: Optional[Message] = bot.core.hunt()\nmessage: Optional[Message] = bot.run_command(name = \"settings\")\nmessage: Optional[Message] = bot.run_sub_command(name = \"advancements\", sub_name = \"prestige\")\n```\n\n# Links\n- [Discord](https://discord.gg/XaQ6FAP3sm)\n- [Trello board](https://trello.com/b/0M9SDJH6/dankcord)\n- Documentation: coming soon.\n\n# Special thanks\n- [ThePrivatePanda](https://github.com/ThePrivatePanda): An ex-maintainer of the project.\n- All our other contributors, DankCord wouldn't have been what it is today without them.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "The first python library for Dank Memer selfbots. Incredibly fast, secure, strong, and reliable.",
    "version": "0.0.2.5",
    "split_keywords": [
        "bot",
        "automation",
        "discord",
        "discord-bot",
        "dank-memer",
        "dankmemer",
        "dank-memer-farm",
        "dank-memer-farmer",
        "dank-memer-coins",
        "dank-memer-coins-farmer"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e21540f393f8006f0590a771c7b9b16e5ff6b1deb2fedcb95c0a664c979484bb",
                "md5": "42b121ee6521da03ecac28d3c8a3493a",
                "sha256": "d3f8a5fa156ea4c69840b6ff7a1433bb7cae7085198a05615dd1c9d9b7e6cd7c"
            },
            "downloads": -1,
            "filename": "DankCord-0.0.2.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "42b121ee6521da03ecac28d3c8a3493a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 15110,
            "upload_time": "2023-01-03T16:58:56",
            "upload_time_iso_8601": "2023-01-03T16:58:56.111090Z",
            "url": "https://files.pythonhosted.org/packages/e2/15/40f393f8006f0590a771c7b9b16e5ff6b1deb2fedcb95c0a664c979484bb/DankCord-0.0.2.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9785ef6d8a75f430edec6b19b0935ee21cd1863244080bbb9d3e68eab31d962c",
                "md5": "aaf6f093a7831a2ac91085dc6edf282b",
                "sha256": "09aef114dc049abb06a398b9f2bbc2af0ac19de8ec18a648ff475f0f3f73f228"
            },
            "downloads": -1,
            "filename": "DankCord-0.0.2.5.tar.gz",
            "has_sig": false,
            "md5_digest": "aaf6f093a7831a2ac91085dc6edf282b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 13023,
            "upload_time": "2023-01-03T16:58:58",
            "upload_time_iso_8601": "2023-01-03T16:58:58.268351Z",
            "url": "https://files.pythonhosted.org/packages/97/85/ef6d8a75f430edec6b19b0935ee21cd1863244080bbb9d3e68eab31d962c/DankCord-0.0.2.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-03 16:58:58",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "dankcord"
}
        
Elapsed time: 0.25267s