Dataset-Trainer


NameDataset-Trainer JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/Rathoreatri03/Model_Trainer
SummarySimplify YOLO model training and data splitting for object detection tasks.
upload_time2024-06-05 01:35:18
maintainerNone
docs_urlNone
authorAtri Rathore
requires_pythonNone
licenseNone
keywords python model training yolo data splitting deep learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Model Trainer



Model Trainer is a Python package designed to simplify the process of training YOLO (You Only Look Once) models for object detection tasks. With Model Trainer, users can easily train YOLO models using custom datasets and split their data into training, validation, and testing sets. The package provides classes for both model training and data splitting, allowing users to efficiently manage their training pipeline. Additionally, Model Trainer includes functionality for saving the best-performing model weights, making it easy to deploy trained models for inference tasks.



## Features



- Train YOLO models with custom datasets

- Split datasets into training, validation, and testing sets

- Save best-performing model weights for deployment



## Installation



You can install Model Trainer using pip:



```bash

pip install Dataset_Trainer

```



## Usage



### Training a YOLO Model



```python

from Dataset_Trainer import YOLO_Trainer



# Initialize YOLO Trainer with data.yaml folder path and destination folder for best weights

trainer = YOLO_Trainer(Data_yaml_fold_path='path/to/data.yaml', Best_Weight_dest='path/to/destination', epochs=50)



# Select YOLO model version and configuration

trainer.model_selection()



# Train the selected model

trainer.model_training()



# Save the best-performing model weights

trainer.model_saving()

```



### Splitting Data



```python

from Dataset_Trainer import Data_Splitter



# Initialize Data Splitter with data folder, destination folder, and number of classes

splitter = Data_Splitter(data_folder='path/to/data', dest_fold='path/to/destination', no_classes=3)



# Collect paths and names of classes

splitter.class_path_folder()



# Split the data into train, validation, and test sets

splitter.split()

```



## License



Model Trainer is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.







## Support



For support, please open an issue on our [GitHub repository](https://github.com/yourusername/Model_Trainer/issues).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Rathoreatri03/Model_Trainer",
    "name": "Dataset-Trainer",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "python, model training, YOLO, data splitting, deep learning",
    "author": "Atri Rathore",
    "author_email": "<rathoreatri@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/02/8e/702a1fdb7aab57f1a980822965843962ab17531a43677730104cf8537ed5/Dataset_Trainer-0.0.1.tar.gz",
    "platform": null,
    "description": "\r\n# Model Trainer\r\n\r\n\r\n\r\nModel Trainer is a Python package designed to simplify the process of training YOLO (You Only Look Once) models for object detection tasks. With Model Trainer, users can easily train YOLO models using custom datasets and split their data into training, validation, and testing sets. The package provides classes for both model training and data splitting, allowing users to efficiently manage their training pipeline. Additionally, Model Trainer includes functionality for saving the best-performing model weights, making it easy to deploy trained models for inference tasks.\r\n\r\n\r\n\r\n## Features\r\n\r\n\r\n\r\n- Train YOLO models with custom datasets\r\n\r\n- Split datasets into training, validation, and testing sets\r\n\r\n- Save best-performing model weights for deployment\r\n\r\n\r\n\r\n## Installation\r\n\r\n\r\n\r\nYou can install Model Trainer using pip:\r\n\r\n\r\n\r\n```bash\r\n\r\npip install Dataset_Trainer\r\n\r\n```\r\n\r\n\r\n\r\n## Usage\r\n\r\n\r\n\r\n### Training a YOLO Model\r\n\r\n\r\n\r\n```python\r\n\r\nfrom Dataset_Trainer import YOLO_Trainer\r\n\r\n\r\n\r\n# Initialize YOLO Trainer with data.yaml folder path and destination folder for best weights\r\n\r\ntrainer = YOLO_Trainer(Data_yaml_fold_path='path/to/data.yaml', Best_Weight_dest='path/to/destination', epochs=50)\r\n\r\n\r\n\r\n# Select YOLO model version and configuration\r\n\r\ntrainer.model_selection()\r\n\r\n\r\n\r\n# Train the selected model\r\n\r\ntrainer.model_training()\r\n\r\n\r\n\r\n# Save the best-performing model weights\r\n\r\ntrainer.model_saving()\r\n\r\n```\r\n\r\n\r\n\r\n### Splitting Data\r\n\r\n\r\n\r\n```python\r\n\r\nfrom Dataset_Trainer import Data_Splitter\r\n\r\n\r\n\r\n# Initialize Data Splitter with data folder, destination folder, and number of classes\r\n\r\nsplitter = Data_Splitter(data_folder='path/to/data', dest_fold='path/to/destination', no_classes=3)\r\n\r\n\r\n\r\n# Collect paths and names of classes\r\n\r\nsplitter.class_path_folder()\r\n\r\n\r\n\r\n# Split the data into train, validation, and test sets\r\n\r\nsplitter.split()\r\n\r\n```\r\n\r\n\r\n\r\n## License\r\n\r\n\r\n\r\nModel Trainer is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n## Support\r\n\r\n\r\n\r\nFor support, please open an issue on our [GitHub repository](https://github.com/yourusername/Model_Trainer/issues).\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Simplify YOLO model training and data splitting for object detection tasks.",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/Rathoreatri03/Model_Trainer"
    },
    "split_keywords": [
        "python",
        " model training",
        " yolo",
        " data splitting",
        " deep learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0bec3577e42f6f0a13021f8c1b253054090a0aba15f0dccd86b34c19a1f51558",
                "md5": "ed3632da09584b8af9efcf18768ed460",
                "sha256": "4ae160e215a0be7abef0839d8b56b62654709847941c3fc823aca8781424eca1"
            },
            "downloads": -1,
            "filename": "Dataset_Trainer-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ed3632da09584b8af9efcf18768ed460",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 5592,
            "upload_time": "2024-06-05T01:35:16",
            "upload_time_iso_8601": "2024-06-05T01:35:16.990534Z",
            "url": "https://files.pythonhosted.org/packages/0b/ec/3577e42f6f0a13021f8c1b253054090a0aba15f0dccd86b34c19a1f51558/Dataset_Trainer-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "028e702a1fdb7aab57f1a980822965843962ab17531a43677730104cf8537ed5",
                "md5": "41003fb51dc697196fd13f9e10dc71d5",
                "sha256": "b70c5c4b259ad986f291f9a92b926b021f0916a69720bd38567dd54b45151673"
            },
            "downloads": -1,
            "filename": "Dataset_Trainer-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "41003fb51dc697196fd13f9e10dc71d5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 5107,
            "upload_time": "2024-06-05T01:35:18",
            "upload_time_iso_8601": "2024-06-05T01:35:18.763729Z",
            "url": "https://files.pythonhosted.org/packages/02/8e/702a1fdb7aab57f1a980822965843962ab17531a43677730104cf8537ed5/Dataset_Trainer-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-05 01:35:18",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Rathoreatri03",
    "github_project": "Model_Trainer",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "dataset-trainer"
}
        
Elapsed time: 0.39828s