Name | DeepSaki JSON |
Version |
1.0.1
JSON |
| download |
home_page | |
Summary | DeepSaki is an add-on to TensorFlow. It provides a variaty of custom classes ranging from activation functions to entire models, helper functions to facilitate connectiong to your, compute HW and many more! |
upload_time | 2023-11-05 15:00:47 |
maintainer | |
docs_url | None |
author | |
requires_python | >=3.10 |
license | MIT License Copyright (c) [2023] [Sascha Kirch] Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
keywords |
deeplearning
machinelearning
tensorflow
tpu
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
<p align="center">
<img src="assets/images/ds_logo.png" alt="deepsaki-logo" width = 80% >
</p>
![Python](https://img.shields.io/badge/python-3.10+-blue)
![GitHub](https://img.shields.io/github/license/sascha-kirch/deepsaki)
**Main-Branch:**<br>
[![Build](https://github.com/sascha-kirch/DeepSaki/actions/workflows/test.yml/badge.svg?branch=main)](https://github.com/sascha-kirch/DeepSaki/actions/workflows/test.yml)
[![codecov](https://codecov.io/gh/sascha-kirch/DeepSaki/branch/main/graph/badge.svg?token=FD7IE1T9EO)](https://codecov.io/gh/sascha-kirch/DeepSaki)
[![Documentation](https://img.shields.io/badge/ref-Documentation-blue)](https://sascha-kirch.github.io/DeepSaki/latest/)
**Develop-Branch:**<br>
[![Build](https://github.com/sascha-kirch/DeepSaki/actions/workflows/test.yml/badge.svg?branch=develop)](https://github.com/sascha-kirch/DeepSaki/actions/workflows/test.yml)
[![codecov](https://codecov.io/gh/sascha-kirch/DeepSaki/branch/develop/graph/badge.svg?token=FD7IE1T9EO)](https://codecov.io/gh/sascha-kirch/DeepSaki)
[![Documentation](https://img.shields.io/badge/ref-Documentation-blue)](https://sascha-kirch.github.io/DeepSaki/develop/)
## :rocket: DeepSaki
DeepSaki is an add-on to [TensorFlow](https://github.com/tensorflow/tensorflow). It provides a variaty of custom classes ranging from activation functions to entire models, helper functions to facilitate connectiong to your, compute HW and many more!
The project started as fun project to learn and to collect the code snippets I was using in my projects. Now it has been transformed into a modern SW package featuring CI/CD and a documentation.
**:medal_military: Some highlights:**
- Layers to transform data into the frequency domain using FFTs, like [FFT2D](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/layers/#DeepSaki.layers.fourier_layer.FFT2D) and [FFT3D](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/layers/#DeepSaki.layers.fourier_layer.FFT3D).
- Layers to perform calculations in the frequency domain supporting complex values like [FourierPooling2D](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/layers/#DeepSaki.layers.fourier_layer.FourierPooling2D).
- Wrapper to make [initializer](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/initializers/#DeepSaki.initializers.initializer_helper.make_initializer_complex) and [activation functions](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/activations/#DeepSaki.activations.complex_valued_activations.ComplexActivation) complex-valued.
- Utilities to [auto-detect your compute hardware](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/utils/#DeepSaki.utils.environment.detect_accelerator).
- autoencoder like models like the [UNet](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/models/#DeepSaki.models.autoencoders.UNet) and discriminator models like a [Layout-Content-Discriminator](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/models/#DeepSaki.models.discriminators.LayoutContentDiscriminator).
- [Augmentations](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/augmentations/) like Cut-Mix and Cut-Out
- [Custom constraints](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/constraints/) for your layers like NonNegative.
- And many more...
**:watch: Coming soon:**
- A CycleGAN framework as used in [VoloGAN](https://arxiv.org/abs/2207.09204)
- A diffusion model framework as used in [RGB-D-Fusion](https://ieeexplore.ieee.org/document/10239167)
- Further support for complex valued deep learning
## :hammer_and_wrench: Installation
### Using git
```bash
git clone https://github.com/sascha-kirch/DeepSaki.git
cd DeepSaki
pip install .
```
### Using pip
![PyPI](https://img.shields.io/pypi/v/deepsaki)
![PyPI - Status](https://img.shields.io/pypi/status/deepsaki)
```
pip install DeepSaki
```
## :handshake: Contribute to DeepSaki
I highly encourage you to contribute to DeepSaki. Checkout our [contribution guide](https://sascha-kirch.github.io/DeepSaki/latest/CONTRIBUTE/) to get started.
## :star: Star History
[![Star History Chart](https://api.star-history.com/svg?repos=sascha-kirch/DeepSaki&type=Date)](https://star-history.com/#sascha-kirch/DeepSaki&Date)
Raw data
{
"_id": null,
"home_page": "",
"name": "DeepSaki",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": "Sascha Kirch <susch130993@googlemail.com>",
"keywords": "deeplearning,machinelearning,tensorflow,TPU",
"author": "",
"author_email": "Sascha Kirch <susch130993@googlemail.com>",
"download_url": "https://files.pythonhosted.org/packages/6f/dd/e664e5172e07bfb515ff2884009dc578b239c192be32a9179c45dd421cb5/DeepSaki-1.0.1.tar.gz",
"platform": "unix",
"description": "<p align=\"center\">\n <img src=\"assets/images/ds_logo.png\" alt=\"deepsaki-logo\" width = 80% >\n</p>\n\n![Python](https://img.shields.io/badge/python-3.10+-blue)\n![GitHub](https://img.shields.io/github/license/sascha-kirch/deepsaki)\n\n**Main-Branch:**<br>\n[![Build](https://github.com/sascha-kirch/DeepSaki/actions/workflows/test.yml/badge.svg?branch=main)](https://github.com/sascha-kirch/DeepSaki/actions/workflows/test.yml)\n[![codecov](https://codecov.io/gh/sascha-kirch/DeepSaki/branch/main/graph/badge.svg?token=FD7IE1T9EO)](https://codecov.io/gh/sascha-kirch/DeepSaki)\n[![Documentation](https://img.shields.io/badge/ref-Documentation-blue)](https://sascha-kirch.github.io/DeepSaki/latest/)\n\n**Develop-Branch:**<br>\n[![Build](https://github.com/sascha-kirch/DeepSaki/actions/workflows/test.yml/badge.svg?branch=develop)](https://github.com/sascha-kirch/DeepSaki/actions/workflows/test.yml)\n[![codecov](https://codecov.io/gh/sascha-kirch/DeepSaki/branch/develop/graph/badge.svg?token=FD7IE1T9EO)](https://codecov.io/gh/sascha-kirch/DeepSaki)\n[![Documentation](https://img.shields.io/badge/ref-Documentation-blue)](https://sascha-kirch.github.io/DeepSaki/develop/)\n\n## :rocket: DeepSaki\n\nDeepSaki is an add-on to [TensorFlow](https://github.com/tensorflow/tensorflow). It provides a variaty of custom classes ranging from activation functions to entire models, helper functions to facilitate connectiong to your, compute HW and many more!\n\nThe project started as fun project to learn and to collect the code snippets I was using in my projects. Now it has been transformed into a modern SW package featuring CI/CD and a documentation. \n\n**:medal_military: Some highlights:**\n\n- Layers to transform data into the frequency domain using FFTs, like [FFT2D](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/layers/#DeepSaki.layers.fourier_layer.FFT2D) and [FFT3D](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/layers/#DeepSaki.layers.fourier_layer.FFT3D).\n- Layers to perform calculations in the frequency domain supporting complex values like [FourierPooling2D](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/layers/#DeepSaki.layers.fourier_layer.FourierPooling2D).\n- Wrapper to make [initializer](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/initializers/#DeepSaki.initializers.initializer_helper.make_initializer_complex) and [activation functions](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/activations/#DeepSaki.activations.complex_valued_activations.ComplexActivation) complex-valued.\n- Utilities to [auto-detect your compute hardware](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/utils/#DeepSaki.utils.environment.detect_accelerator).\n- autoencoder like models like the [UNet](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/models/#DeepSaki.models.autoencoders.UNet) and discriminator models like a [Layout-Content-Discriminator](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/models/#DeepSaki.models.discriminators.LayoutContentDiscriminator).\n- [Augmentations](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/augmentations/) like Cut-Mix and Cut-Out\n- [Custom constraints](https://sascha-kirch.github.io/DeepSaki/latest/reference/DeepSaki/constraints/) for your layers like NonNegative.\n- And many more...\n \n**:watch: Coming soon:**\n\n- A CycleGAN framework as used in [VoloGAN](https://arxiv.org/abs/2207.09204)\n- A diffusion model framework as used in [RGB-D-Fusion](https://ieeexplore.ieee.org/document/10239167)\n- Further support for complex valued deep learning\n\n\n\n## :hammer_and_wrench: Installation\n\n### Using git\n```bash\ngit clone https://github.com/sascha-kirch/DeepSaki.git\ncd DeepSaki\npip install .\n```\n\n### Using pip\n![PyPI](https://img.shields.io/pypi/v/deepsaki)\n![PyPI - Status](https://img.shields.io/pypi/status/deepsaki)\n```\npip install DeepSaki\n```\n\n## :handshake: Contribute to DeepSaki\nI highly encourage you to contribute to DeepSaki. Checkout our [contribution guide](https://sascha-kirch.github.io/DeepSaki/latest/CONTRIBUTE/) to get started. \n\n## :star: Star History\n[![Star History Chart](https://api.star-history.com/svg?repos=sascha-kirch/DeepSaki&type=Date)](https://star-history.com/#sascha-kirch/DeepSaki&Date)\n",
"bugtrack_url": null,
"license": "MIT License Copyright (c) [2023] [Sascha Kirch] Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ",
"summary": "DeepSaki is an add-on to TensorFlow. It provides a variaty of custom classes ranging from activation functions to entire models, helper functions to facilitate connectiong to your, compute HW and many more!",
"version": "1.0.1",
"project_urls": {
"Changelog": "https://sascha-kirch.github.io/DeepSaki/latest/CHANGELOG/",
"Documentation": "https://sascha-kirch.github.io/DeepSaki",
"Homepage": "https://sascha-kirch.github.io/",
"Repository": "https://github.com/sascha-kirch/DeepSaki"
},
"split_keywords": [
"deeplearning",
"machinelearning",
"tensorflow",
"tpu"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "85c519e36435283ca550fbb09184202a114c3640312cf820df3f75b4411654e7",
"md5": "318bfc3ac480aaccfbdf62db7c5d0b72",
"sha256": "ada261977e394f5548975b2d15bdbb7f98b573a089b40df5774d5838b88e76d6"
},
"downloads": -1,
"filename": "DeepSaki-1.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "318bfc3ac480aaccfbdf62db7c5d0b72",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 54214,
"upload_time": "2023-11-05T15:00:45",
"upload_time_iso_8601": "2023-11-05T15:00:45.483459Z",
"url": "https://files.pythonhosted.org/packages/85/c5/19e36435283ca550fbb09184202a114c3640312cf820df3f75b4411654e7/DeepSaki-1.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6fdde664e5172e07bfb515ff2884009dc578b239c192be32a9179c45dd421cb5",
"md5": "ab8a50cfd95bedb50bc3b289cafc130b",
"sha256": "d9211324431278c7575417f54879b6d7c306d0abadca9493f7b747da3aa28e30"
},
"downloads": -1,
"filename": "DeepSaki-1.0.1.tar.gz",
"has_sig": false,
"md5_digest": "ab8a50cfd95bedb50bc3b289cafc130b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 1242254,
"upload_time": "2023-11-05T15:00:47",
"upload_time_iso_8601": "2023-11-05T15:00:47.544480Z",
"url": "https://files.pythonhosted.org/packages/6f/dd/e664e5172e07bfb515ff2884009dc578b239c192be32a9179c45dd421cb5/DeepSaki-1.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-05 15:00:47",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "sascha-kirch",
"github_project": "DeepSaki",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "deepsaki"
}