DeerLab


NameDeerLab JSON
Version 1.1.3 PyPI version JSON
download
home_pagehttps://github.com/JeschkeLab/DeerLab
SummaryComprehensive package for data analysis of dipolar EPR spectroscopy
upload_time2024-07-31 19:25:33
maintainerNone
docs_urlNone
authorLuis Fábregas Ibáñez , Stefan Stoll and other contributors
requires_python>=3.8
licenseLICENSE.txt
keywords data analysis modeling least-squares epr spectroscopy deer peldor
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DeerLab

[![https://jeschkelab.github.io/DeerLab/](https://img.shields.io/pypi/v/deerlab)](https://pypi.org/project/DeerLab/)
[![Website](https://img.shields.io/website?down_message=offline&label=Documentation&up_message=online&url=https%3A%2F%2Fjeschkelab.github.io%2FDeerLab%2Findex.html)](https://jeschkelab.github.io/DeerLab/)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/deerlab)](https://www.python.org/downloads/)
![PyPI - Downloads](https://img.shields.io/pypi/dm/deerlab?color=brightgreen)

## About

DeerLab is a comprehensive free scientific software package for Python focused on modeling, penalized least-squares regression, and uncertainty quantification. 
It provides highly specialized on the analysis of dipolar EPR (electron paramagnetic resonance) spectroscopy data. Dipolar EPR spectroscopy techniques include DEER (double electron-electron resonance), RIDME (relaxation-induced dipolar modulation enhancement), and others. 

The documentation can be found [here](https://jeschkelab.github.io/DeerLab/index.html).

The early versions of DeerLab (up to version 0.9.2) are written in MATLAB. The old MATLAB codebase is archived and can be found [here](https://github.com/JeschkeLab/DeerLab-Matlab).

## Requirements

DeerLab is available for Windows, Mac and Linux systems and requires **Python 3.8**, **3.9**, **3.10**, or  **3.11**.

All additional dependencies are automatically downloaded and installed during the setup.
 
## Setup

A pre-built distribution can be installed from the PyPI repository using `pip`.

From a terminal (preferably with admin privileges) use the following command to install from PyPI:

    python -m pip install deerlab

More details on the installation and updating of DeerLab can be found [here](https://jeschkelab.github.io/DeerLab/installation.html).

## Citing DeerLab

When you use DeerLab in your work, please cite the following publication:

 **DeerLab: a comprehensive software package for analyzing dipolar electron paramagnetic resonance spectroscopy data** <br>
 Luis Fábregas Ibáñez, Gunnar Jeschke, Stefan Stoll <br>
 Magn. Reson., 1, 209–224, 2020 <br>
 <a href="https://doi.org/10.5194/mr-1-209-2020"> doi.org/10.5194/mr-1-209-2020</a>

Here is the citation in bibtex format:

```tex
@article{FabregasIbanez2020_DeerLab,
  title = {{DeerLab}: a comprehensive software package for analyzing dipolar electron paramagnetic resonance spectroscopy data},
  author = {Fábregas Ibáñez, Luis and Jeschke, Gunnar and Stoll, Stefan},
  journal = {Magnetic Resonance},
  year = {2020},
  volume = {1},
  number = {2},
  pages = {209--224},
  doi = {10.5194/mr-1-209-2020}
}
```

## License

DeerLab is licensed under the [MIT License](LICENSE).

Copyright © 2019-2023: Luis Fábregas Ibáñez, Stefan Stoll, Gunnar Jeschke, and [other contributors](https://github.com/JeschkeLab/DeerLab/contributors).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/JeschkeLab/DeerLab",
    "name": "DeerLab",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "data, analysis, modeling, least-squares, EPR, spectroscopy, DEER, PELDOR",
    "author": "Luis F\u00e1bregas Ib\u00e1\u00f1ez , Stefan Stoll and other contributors",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/e5/09/719651309ea2a74d5543eacc4ff719f9bba3414f4acaa9af5e207f38da68/deerlab-1.1.3.tar.gz",
    "platform": null,
    "description": "# DeerLab\n\n[![https://jeschkelab.github.io/DeerLab/](https://img.shields.io/pypi/v/deerlab)](https://pypi.org/project/DeerLab/)\n[![Website](https://img.shields.io/website?down_message=offline&label=Documentation&up_message=online&url=https%3A%2F%2Fjeschkelab.github.io%2FDeerLab%2Findex.html)](https://jeschkelab.github.io/DeerLab/)\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/deerlab)](https://www.python.org/downloads/)\n![PyPI - Downloads](https://img.shields.io/pypi/dm/deerlab?color=brightgreen)\n\n## About\n\nDeerLab is a comprehensive free scientific software package for Python focused on modeling, penalized least-squares regression, and uncertainty quantification. \nIt provides highly specialized on the analysis of dipolar EPR (electron paramagnetic resonance) spectroscopy data. Dipolar EPR spectroscopy techniques include DEER (double electron-electron resonance), RIDME (relaxation-induced dipolar modulation enhancement), and others. \n\nThe documentation can be found [here](https://jeschkelab.github.io/DeerLab/index.html).\n\nThe early versions of DeerLab (up to version 0.9.2) are written in MATLAB. The old MATLAB codebase is archived and can be found [here](https://github.com/JeschkeLab/DeerLab-Matlab).\n\n## Requirements\n\nDeerLab is available for Windows, Mac and Linux systems and requires **Python 3.8**, **3.9**, **3.10**, or  **3.11**.\n\nAll additional dependencies are automatically downloaded and installed during the setup.\n \n## Setup\n\nA pre-built distribution can be installed from the PyPI repository using `pip`.\n\nFrom a terminal (preferably with admin privileges) use the following command to install from PyPI:\n\n    python -m pip install deerlab\n\nMore details on the installation and updating of DeerLab can be found [here](https://jeschkelab.github.io/DeerLab/installation.html).\n\n## Citing DeerLab\n\nWhen you use DeerLab in your work, please cite the following publication:\n\n **DeerLab: a comprehensive software package for analyzing dipolar electron paramagnetic resonance spectroscopy data** <br>\n Luis F\u00e1bregas Ib\u00e1\u00f1ez, Gunnar Jeschke, Stefan Stoll <br>\n Magn. Reson., 1, 209\u2013224, 2020 <br>\n <a href=\"https://doi.org/10.5194/mr-1-209-2020\"> doi.org/10.5194/mr-1-209-2020</a>\n\nHere is the citation in bibtex format:\n\n```tex\n@article{FabregasIbanez2020_DeerLab,\n  title = {{DeerLab}: a comprehensive software package for analyzing dipolar electron paramagnetic resonance spectroscopy data},\n  author = {F\u00e1bregas Ib\u00e1\u00f1ez, Luis and Jeschke, Gunnar and Stoll, Stefan},\n  journal = {Magnetic Resonance},\n  year = {2020},\n  volume = {1},\n  number = {2},\n  pages = {209--224},\n  doi = {10.5194/mr-1-209-2020}\n}\n```\n\n## License\n\nDeerLab is licensed under the [MIT License](LICENSE).\n\nCopyright \u00a9 2019-2023: Luis F\u00e1bregas Ib\u00e1\u00f1ez, Stefan Stoll, Gunnar Jeschke, and [other contributors](https://github.com/JeschkeLab/DeerLab/contributors).\n",
    "bugtrack_url": null,
    "license": "LICENSE.txt",
    "summary": "Comprehensive package for data analysis of dipolar EPR spectroscopy",
    "version": "1.1.3",
    "project_urls": {
        "Documentation": "https://jeschkelab.github.io/DeerLab/",
        "Homepage": "https://github.com/JeschkeLab/DeerLab",
        "Source": "https://github.com/JeschkeLab/DeerLab"
    },
    "split_keywords": [
        "data",
        " analysis",
        " modeling",
        " least-squares",
        " epr",
        " spectroscopy",
        " deer",
        " peldor"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "24cb65be532d62e11bcd782ab3f9ba4a73c312150805df530f977e1308b5c5d0",
                "md5": "80b19309583ec947ae7b9c6fada45576",
                "sha256": "34d7049f12d164d9b6d6b0febba6aaf6c0ef585ec45174193aa5efb179a0a71d"
            },
            "downloads": -1,
            "filename": "DeerLab-1.1.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "80b19309583ec947ae7b9c6fada45576",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 126040,
            "upload_time": "2024-07-31T19:25:32",
            "upload_time_iso_8601": "2024-07-31T19:25:32.100731Z",
            "url": "https://files.pythonhosted.org/packages/24/cb/65be532d62e11bcd782ab3f9ba4a73c312150805df530f977e1308b5c5d0/DeerLab-1.1.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e509719651309ea2a74d5543eacc4ff719f9bba3414f4acaa9af5e207f38da68",
                "md5": "4ca2ff832dbcdfc71dc84ac3d08eb946",
                "sha256": "9456ee30d4a5fe7f3f20ded7821e440b2d9741aecca04472fdf934b13e137046"
            },
            "downloads": -1,
            "filename": "deerlab-1.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "4ca2ff832dbcdfc71dc84ac3d08eb946",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 145073,
            "upload_time": "2024-07-31T19:25:33",
            "upload_time_iso_8601": "2024-07-31T19:25:33.202936Z",
            "url": "https://files.pythonhosted.org/packages/e5/09/719651309ea2a74d5543eacc4ff719f9bba3414f4acaa9af5e207f38da68/deerlab-1.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-31 19:25:33",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "JeschkeLab",
    "github_project": "DeerLab",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "deerlab"
}
        
Elapsed time: 3.50937s