Dooders


NameDooders JSON
Version 0.4.0 PyPI version JSON
download
home_pagehttps://github.com/csmangum/Dooders
SummaryDooders is an open-source research project focused on the
upload_time2023-09-27 22:36:58
maintainer
docs_urlNone
authorChris Mangum
requires_python
licenseMIT
keywords artificial intelligence simulation ai agents cognitive agents evolutionary algorithms emergent behavior open-source research project digital environment machine learning agent-based model reinforcement learning ai environment causal control energy consumption autonomous agents ai development virtual reality simulated reality ai research computational intelligence interactive simulation ai evolution complex systems life simulation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Dooders

![dooders logo](./docs/dooder_logo.png)

> Reality works; simulate it.  
  
## Overview

Dooders is an open-source research project focused on the development of artificial intelligent agents in a simulated reality. The project aims to enable the conditions and mechanisms for cognitive agents to evolve and emerge in a digital environment.

A [Dooder](docs/Dooder.md) is an agent object in the simulation with an amount of causal control. It acts in the simulation only as long as it consumes [Energy](https://github.com/csmangum/Dooders/blob/main/docs/Energy.md).

Take a look on how a Dooder will [learn and act](https://github.com/csmangum/Dooders/blob/main/docs/Learning.md), get an overview of the [core components](https://github.com/csmangum/Dooders/blob/main/docs/Core.md) of the library, or read [why I started the project](https://github.com/csmangum/Dooders/blob/main/docs/Why.md).

I will also be documenting experiments in [substack](https://rememberization.substack.com/p/experiment-list). Including the results from my [first experiment](https://rememberization.substack.com/p/experiment-1-single-simulation).

***The code, content, and concepts will change over time as I explore different ideas.***  

***Everything in this repository should be considered unfinished and a work-in-progress***
  
### How to use it

```python
from dooders import Experiment

experiment = Experiment()

experiment.simulate()

experiment.experiment_summary()


# Example output using the default settings
# This simulation ended after 53 cycle when 
# all Dooders died from starvation

{'SimulationID': 'XGZBhzoc8juERXpZjLZMPR',
 'Timestamp': '2023-03-09, 18:20:33',
 'CycleCount': 53,
 'TotalEnergy': 634,
 'ConsumedEnergy': 41,
 'StartingDooderCount': 10,
 'EndingDooderCount': 0,
 'ElapsedSeconds': 0,
 'AverageAge': 14}
```
For more details, see the [Quick Start guide](docs/QuickStart.md).  



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/csmangum/Dooders",
    "name": "Dooders",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "Artificial Intelligence,Simulation,AI Agents,Cognitive Agents,Evolutionary Algorithms,Emergent Behavior,Open-Source,Research Project,Digital Environment,Machine Learning,Agent-Based Model,Reinforcement Learning,AI Environment,Causal Control,Energy Consumption,Autonomous Agents,AI Development,Virtual Reality,Simulated Reality,AI Research,Computational Intelligence,Interactive Simulation,AI Evolution,Complex Systems,Life Simulation",
    "author": "Chris Mangum",
    "author_email": "csmangum@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/de/79/680ccfbbe3a4a1a8bd83497ae777332c4d54908f5cdc05df329a1e36c4ca/Dooders-0.4.0.tar.gz",
    "platform": null,
    "description": "\n# Dooders\n\n![dooders logo](./docs/dooder_logo.png)\n\n> Reality works; simulate it.  \n  \n## Overview\n\nDooders is an open-source research project focused on the development of artificial intelligent agents in a simulated reality. The project aims to enable the conditions and mechanisms for cognitive agents to evolve and emerge in a digital environment.\n\nA [Dooder](docs/Dooder.md) is an agent object in the simulation with an amount of causal control. It acts in the simulation only as long as it consumes [Energy](https://github.com/csmangum/Dooders/blob/main/docs/Energy.md).\n\nTake a look on how a Dooder will [learn and act](https://github.com/csmangum/Dooders/blob/main/docs/Learning.md), get an overview of the [core components](https://github.com/csmangum/Dooders/blob/main/docs/Core.md) of the library, or read [why I started the project](https://github.com/csmangum/Dooders/blob/main/docs/Why.md).\n\nI will also be documenting experiments in [substack](https://rememberization.substack.com/p/experiment-list). Including the results from my [first experiment](https://rememberization.substack.com/p/experiment-1-single-simulation).\n\n***The code, content, and concepts will change over time as I explore different ideas.***  \n\n***Everything in this repository should be considered unfinished and a work-in-progress***\n  \n### How to use it\n\n```python\nfrom dooders import Experiment\n\nexperiment = Experiment()\n\nexperiment.simulate()\n\nexperiment.experiment_summary()\n\n\n# Example output using the default settings\n# This simulation ended after 53 cycle when \n# all Dooders died from starvation\n\n{'SimulationID': 'XGZBhzoc8juERXpZjLZMPR',\n 'Timestamp': '2023-03-09, 18:20:33',\n 'CycleCount': 53,\n 'TotalEnergy': 634,\n 'ConsumedEnergy': 41,\n 'StartingDooderCount': 10,\n 'EndingDooderCount': 0,\n 'ElapsedSeconds': 0,\n 'AverageAge': 14}\n```\nFor more details, see the [Quick Start guide](docs/QuickStart.md).  \n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Dooders is an open-source research project focused on the",
    "version": "0.4.0",
    "project_urls": {
        "Download": "https://github.com/csmangum/Dooders/archive/refs/tags/v0.3.0.tar.gz",
        "Homepage": "https://github.com/csmangum/Dooders"
    },
    "split_keywords": [
        "artificial intelligence",
        "simulation",
        "ai agents",
        "cognitive agents",
        "evolutionary algorithms",
        "emergent behavior",
        "open-source",
        "research project",
        "digital environment",
        "machine learning",
        "agent-based model",
        "reinforcement learning",
        "ai environment",
        "causal control",
        "energy consumption",
        "autonomous agents",
        "ai development",
        "virtual reality",
        "simulated reality",
        "ai research",
        "computational intelligence",
        "interactive simulation",
        "ai evolution",
        "complex systems",
        "life simulation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "56838d65031bccd7860a48ba3027f11838847173d21a1ffa56f7770228abd329",
                "md5": "d8a69cacc3a0b8fa21b824fb66e07ace",
                "sha256": "64273cc0886f1e60d8ee409269412bb72d90a429a973d0d5d89c9c8350989507"
            },
            "downloads": -1,
            "filename": "Dooders-0.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d8a69cacc3a0b8fa21b824fb66e07ace",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 121440,
            "upload_time": "2023-09-27T22:36:56",
            "upload_time_iso_8601": "2023-09-27T22:36:56.691784Z",
            "url": "https://files.pythonhosted.org/packages/56/83/8d65031bccd7860a48ba3027f11838847173d21a1ffa56f7770228abd329/Dooders-0.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "de79680ccfbbe3a4a1a8bd83497ae777332c4d54908f5cdc05df329a1e36c4ca",
                "md5": "ca7c3adda8f834c2f010e15a9663e214",
                "sha256": "881143e71227a0612357aef38c66fc2370025cab376fc48347b9bc497e4b3117"
            },
            "downloads": -1,
            "filename": "Dooders-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "ca7c3adda8f834c2f010e15a9663e214",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 92434,
            "upload_time": "2023-09-27T22:36:58",
            "upload_time_iso_8601": "2023-09-27T22:36:58.618794Z",
            "url": "https://files.pythonhosted.org/packages/de/79/680ccfbbe3a4a1a8bd83497ae777332c4d54908f5cdc05df329a1e36c4ca/Dooders-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-27 22:36:58",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "csmangum",
    "github_project": "Dooders",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "dooders"
}
        
Elapsed time: 1.42111s