# Dooders
![dooders logo](./docs/dooder_logo.png)
> Reality works; simulate it.
## Overview
Dooders is an open-source research project focused on the development of artificial intelligent agents in a simulated reality. The project aims to enable the conditions and mechanisms for cognitive agents to evolve and emerge in a digital environment.
A [Dooder](docs/Dooder.md) is an agent object in the simulation with an amount of causal control. It acts in the simulation only as long as it consumes [Energy](https://github.com/csmangum/Dooders/blob/main/docs/Energy.md).
Take a look on how a Dooder will [learn and act](https://github.com/csmangum/Dooders/blob/main/docs/Learning.md), get an overview of the [core components](https://github.com/csmangum/Dooders/blob/main/docs/Core.md) of the library, or read [why I started the project](https://github.com/csmangum/Dooders/blob/main/docs/Why.md).
I will also be documenting experiments in [substack](https://rememberization.substack.com/p/experiment-list). Including the results from my [first experiment](https://rememberization.substack.com/p/experiment-1-single-simulation).
***The code, content, and concepts will change over time as I explore different ideas.***
***Everything in this repository should be considered unfinished and a work-in-progress***
### How to use it
```python
from dooders import Experiment
experiment = Experiment()
experiment.simulate()
experiment.experiment_summary()
# Example output using the default settings
# This simulation ended after 53 cycle when
# all Dooders died from starvation
{'SimulationID': 'XGZBhzoc8juERXpZjLZMPR',
'Timestamp': '2023-03-09, 18:20:33',
'CycleCount': 53,
'TotalEnergy': 634,
'ConsumedEnergy': 41,
'StartingDooderCount': 10,
'EndingDooderCount': 0,
'ElapsedSeconds': 0,
'AverageAge': 14}
```
For more details, see the [Quick Start guide](docs/QuickStart.md).
Raw data
{
"_id": null,
"home_page": "https://github.com/csmangum/Dooders",
"name": "Dooders",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "Artificial Intelligence,Simulation,AI Agents,Cognitive Agents,Evolutionary Algorithms,Emergent Behavior,Open-Source,Research Project,Digital Environment,Machine Learning,Agent-Based Model,Reinforcement Learning,AI Environment,Causal Control,Energy Consumption,Autonomous Agents,AI Development,Virtual Reality,Simulated Reality,AI Research,Computational Intelligence,Interactive Simulation,AI Evolution,Complex Systems,Life Simulation",
"author": "Chris Mangum",
"author_email": "csmangum@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/de/79/680ccfbbe3a4a1a8bd83497ae777332c4d54908f5cdc05df329a1e36c4ca/Dooders-0.4.0.tar.gz",
"platform": null,
"description": "\n# Dooders\n\n![dooders logo](./docs/dooder_logo.png)\n\n> Reality works; simulate it. \n \n## Overview\n\nDooders is an open-source research project focused on the development of artificial intelligent agents in a simulated reality. The project aims to enable the conditions and mechanisms for cognitive agents to evolve and emerge in a digital environment.\n\nA [Dooder](docs/Dooder.md) is an agent object in the simulation with an amount of causal control. It acts in the simulation only as long as it consumes [Energy](https://github.com/csmangum/Dooders/blob/main/docs/Energy.md).\n\nTake a look on how a Dooder will [learn and act](https://github.com/csmangum/Dooders/blob/main/docs/Learning.md), get an overview of the [core components](https://github.com/csmangum/Dooders/blob/main/docs/Core.md) of the library, or read [why I started the project](https://github.com/csmangum/Dooders/blob/main/docs/Why.md).\n\nI will also be documenting experiments in [substack](https://rememberization.substack.com/p/experiment-list). Including the results from my [first experiment](https://rememberization.substack.com/p/experiment-1-single-simulation).\n\n***The code, content, and concepts will change over time as I explore different ideas.*** \n\n***Everything in this repository should be considered unfinished and a work-in-progress***\n \n### How to use it\n\n```python\nfrom dooders import Experiment\n\nexperiment = Experiment()\n\nexperiment.simulate()\n\nexperiment.experiment_summary()\n\n\n# Example output using the default settings\n# This simulation ended after 53 cycle when \n# all Dooders died from starvation\n\n{'SimulationID': 'XGZBhzoc8juERXpZjLZMPR',\n 'Timestamp': '2023-03-09, 18:20:33',\n 'CycleCount': 53,\n 'TotalEnergy': 634,\n 'ConsumedEnergy': 41,\n 'StartingDooderCount': 10,\n 'EndingDooderCount': 0,\n 'ElapsedSeconds': 0,\n 'AverageAge': 14}\n```\nFor more details, see the [Quick Start guide](docs/QuickStart.md). \n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Dooders is an open-source research project focused on the",
"version": "0.4.0",
"project_urls": {
"Download": "https://github.com/csmangum/Dooders/archive/refs/tags/v0.3.0.tar.gz",
"Homepage": "https://github.com/csmangum/Dooders"
},
"split_keywords": [
"artificial intelligence",
"simulation",
"ai agents",
"cognitive agents",
"evolutionary algorithms",
"emergent behavior",
"open-source",
"research project",
"digital environment",
"machine learning",
"agent-based model",
"reinforcement learning",
"ai environment",
"causal control",
"energy consumption",
"autonomous agents",
"ai development",
"virtual reality",
"simulated reality",
"ai research",
"computational intelligence",
"interactive simulation",
"ai evolution",
"complex systems",
"life simulation"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "56838d65031bccd7860a48ba3027f11838847173d21a1ffa56f7770228abd329",
"md5": "d8a69cacc3a0b8fa21b824fb66e07ace",
"sha256": "64273cc0886f1e60d8ee409269412bb72d90a429a973d0d5d89c9c8350989507"
},
"downloads": -1,
"filename": "Dooders-0.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d8a69cacc3a0b8fa21b824fb66e07ace",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 121440,
"upload_time": "2023-09-27T22:36:56",
"upload_time_iso_8601": "2023-09-27T22:36:56.691784Z",
"url": "https://files.pythonhosted.org/packages/56/83/8d65031bccd7860a48ba3027f11838847173d21a1ffa56f7770228abd329/Dooders-0.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "de79680ccfbbe3a4a1a8bd83497ae777332c4d54908f5cdc05df329a1e36c4ca",
"md5": "ca7c3adda8f834c2f010e15a9663e214",
"sha256": "881143e71227a0612357aef38c66fc2370025cab376fc48347b9bc497e4b3117"
},
"downloads": -1,
"filename": "Dooders-0.4.0.tar.gz",
"has_sig": false,
"md5_digest": "ca7c3adda8f834c2f010e15a9663e214",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 92434,
"upload_time": "2023-09-27T22:36:58",
"upload_time_iso_8601": "2023-09-27T22:36:58.618794Z",
"url": "https://files.pythonhosted.org/packages/de/79/680ccfbbe3a4a1a8bd83497ae777332c4d54908f5cdc05df329a1e36c4ca/Dooders-0.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-09-27 22:36:58",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "csmangum",
"github_project": "Dooders",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "dooders"
}