EASLT


NameEASLT JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/AkmalHusain2003/enhanced-automatic-shifted-log
SummaryEnhanced Automatic Shifted Log Transformer with Monte Carlo optimization
upload_time2025-08-12 06:39:39
maintainerNone
docs_urlNone
authorMuhammad Akmal Husain
requires_python>=3.7
licenseMIT
keywords data-transformation log-transformation normality monte-carlo-optimization statistical-preprocessing data-science machine-learning numba-acceleration feng-transformation adaptive-algorithms
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Enhanced Automatic Shifted Log Transformer (EASLT)

Automatically transform skewed data into more normal distributions using a Monte Carlo–optimized shifted log transformation.

---

## 🚀 Features

- **Works with negative, zero, and positive values**
- **Reduces skewness and kurtosis**
- **Adaptive, data-driven transformation**
- **Multi-test normality assessment**
- **Scikit-learn compatible**
- **Numba-accelerated for speed**

---

## 📦 Installation

```bash
pip install EASLT
```

---

## ⚡ Quick Start

```python
from EASLT import AutomaticShiftedLogTransformer
import numpy as np

# Example skewed data
np.random.seed(42)
data = np.random.exponential(2, (1000, 3))

# Transform
transformer = AutomaticShiftedLogTransformer(mc_iterations=1000, random_state=42)
data_transformed = transformer.fit_transform(data)
```

---

## 📚 How It Works

EASLT:
1. **Detects data complexity** (normal, mild issues, needs transformation)
2. **Applies robust shifting** for negative/zero values
3. **Detects outliers** and optionally winsorizes
4. **Optimizes parameters** via Monte Carlo with Dirichlet sampling
5. **Applies Feng's shifted log transformation**

---

## 📝 License

MIT License © 2025 Muhammad Akmal Husain

## 🔗 Links

- **[GitHub Repository](https://github.com/AkmalHusain2003/enhanced-automatic-shifted-log)**
- **[Documentation](https://github.com/AkmalHusain2003/enhanced-automatic-shifted-log#readme)**

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/AkmalHusain2003/enhanced-automatic-shifted-log",
    "name": "EASLT",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "data-transformation, log-transformation, normality, monte-carlo-optimization, statistical-preprocessing, data-science, machine-learning, numba-acceleration, feng-transformation, adaptive-algorithms",
    "author": "Muhammad Akmal Husain",
    "author_email": "Muhammad Akmal Husain <akmalhusain2003@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/3c/73/40cb5f103d939405809438c7adbbb05fdb6bc998e90e97994044cf8501f5/EASLT-0.0.1.tar.gz",
    "platform": null,
    "description": "# Enhanced Automatic Shifted Log Transformer (EASLT)\r\n\r\nAutomatically transform skewed data into more normal distributions using a Monte Carlo\u2013optimized shifted log transformation.\r\n\r\n---\r\n\r\n## \ud83d\ude80 Features\r\n\r\n- **Works with negative, zero, and positive values**\r\n- **Reduces skewness and kurtosis**\r\n- **Adaptive, data-driven transformation**\r\n- **Multi-test normality assessment**\r\n- **Scikit-learn compatible**\r\n- **Numba-accelerated for speed**\r\n\r\n---\r\n\r\n## \ud83d\udce6 Installation\r\n\r\n```bash\r\npip install EASLT\r\n```\r\n\r\n---\r\n\r\n## \u26a1 Quick Start\r\n\r\n```python\r\nfrom EASLT import AutomaticShiftedLogTransformer\r\nimport numpy as np\r\n\r\n# Example skewed data\r\nnp.random.seed(42)\r\ndata = np.random.exponential(2, (1000, 3))\r\n\r\n# Transform\r\ntransformer = AutomaticShiftedLogTransformer(mc_iterations=1000, random_state=42)\r\ndata_transformed = transformer.fit_transform(data)\r\n```\r\n\r\n---\r\n\r\n## \ud83d\udcda How It Works\r\n\r\nEASLT:\r\n1. **Detects data complexity** (normal, mild issues, needs transformation)\r\n2. **Applies robust shifting** for negative/zero values\r\n3. **Detects outliers** and optionally winsorizes\r\n4. **Optimizes parameters** via Monte Carlo with Dirichlet sampling\r\n5. **Applies Feng's shifted log transformation**\r\n\r\n---\r\n\r\n## \ud83d\udcdd License\r\n\r\nMIT License \u00a9 2025 Muhammad Akmal Husain\r\n\r\n## \ud83d\udd17 Links\r\n\r\n- **[GitHub Repository](https://github.com/AkmalHusain2003/enhanced-automatic-shifted-log)**\r\n- **[Documentation](https://github.com/AkmalHusain2003/enhanced-automatic-shifted-log#readme)**\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Enhanced Automatic Shifted Log Transformer with Monte Carlo optimization",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/AkmalHusain2003/enhanced-automatic-shifted-log",
        "Issues": "https://github.com/AkmalHusain2003/enhanced-automatic-shifted-log/issues",
        "Repository": "https://github.com/AkmalHusain2003/enhanced-automatic-shifted-log.git"
    },
    "split_keywords": [
        "data-transformation",
        " log-transformation",
        " normality",
        " monte-carlo-optimization",
        " statistical-preprocessing",
        " data-science",
        " machine-learning",
        " numba-acceleration",
        " feng-transformation",
        " adaptive-algorithms"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0532b3adcb65e86fcfa4760a4ff4b46ac84616401ba9216e5eb3943e738f3e51",
                "md5": "058ce99d702d965fef4c64d809bbd6fe",
                "sha256": "11c5cfe248381e02cc9f4ce8ed18371eb4f268e99ec315c69dc26ec9d06d21ce"
            },
            "downloads": -1,
            "filename": "EASLT-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "058ce99d702d965fef4c64d809bbd6fe",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 12857,
            "upload_time": "2025-08-12T06:39:38",
            "upload_time_iso_8601": "2025-08-12T06:39:38.368616Z",
            "url": "https://files.pythonhosted.org/packages/05/32/b3adcb65e86fcfa4760a4ff4b46ac84616401ba9216e5eb3943e738f3e51/EASLT-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3c7340cb5f103d939405809438c7adbbb05fdb6bc998e90e97994044cf8501f5",
                "md5": "ba87e26ac1ed9d07bfc8fd31812c382e",
                "sha256": "1e6db727444d633e774621c42482ac871d91adbfd58695c372fa2c8d0c70ff82"
            },
            "downloads": -1,
            "filename": "EASLT-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "ba87e26ac1ed9d07bfc8fd31812c382e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 15181,
            "upload_time": "2025-08-12T06:39:39",
            "upload_time_iso_8601": "2025-08-12T06:39:39.457215Z",
            "url": "https://files.pythonhosted.org/packages/3c/73/40cb5f103d939405809438c7adbbb05fdb6bc998e90e97994044cf8501f5/EASLT-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-12 06:39:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "AkmalHusain2003",
    "github_project": "enhanced-automatic-shifted-log",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "easlt"
}
        
Elapsed time: 2.18484s