EDAeasy


NameEDAeasy JSON
Version 1.2.9 PyPI version JSON
download
home_pageNone
SummaryFunctions and tools for making Exploratory Data Analysis easy!
upload_time2024-11-17 23:04:42
maintainerNone
docs_urlNone
authorFrancisco Jesus Ocazionez Cardozo
requires_python<4.0,>=3.9
licenseMIT
keywords exploratory analysis eda
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # EDAeasy 😀
The package for quick exploratory data analysis


## Instalation 

`pip install EDAeasy`

## Usage
The **dataframe_summary** function have relative simple summary of the columns of your dataframe
for quick look at tabular data

    Generate a summary DataFrame of the input DataFrame 'dataframe'.

    Parameters
    ----------
    dataframe : pandas.DataFrame
        The input DataFrame for which the summary needs to be generated.

    Returns
    -------
    pandas.DataFrame
        A DataFrame containing summary information for each column in 'df':
        - Type: Data type of the column.
        - Min: Minimum value in the column.
        - Max: Maximum value in the column.
        - Nan %: Percentage of NaN values in the column.
        - # Unique Values: Total number of unique values in the column.
        - Unique values: List of unique values in the column.

    Example
    -------
    >>> data = {
            'age': ['[40-50)', '[60-70)', '[70-80)'],
            'time_in_hospital': [8, 3, 5],
            'n_lab_procedures': [72, 34, 45],
            ...
        }
    >>> dataframe = pd.DataFrame(data)
    >>> result = dataframe_summary(df)
    >>> print(result)
               Type       Min        Max  Nan %  # Unique Values                                  Unique values
    Variables                                                                                                              
    age       object   [40-50)    [90-100)    0.0        3      ['[70-80)', '[50-60)', '[60-70)', '[40-50)', '[80-90)', ...
    time_in_hospital  int64    1           14    0.0        3        [8, 3, 5]
    n_lab_procedures  int64    1          113    0.0        3        [72, 34, 45]
    ...

    Note
    ----
    The function uses vectorized operations to improve performance and memory usage.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "EDAeasy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "Exploratory Analysis, EDA",
    "author": "Francisco Jesus Ocazionez Cardozo",
    "author_email": "pach812@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/a5/13/705f97a71542a6dfb8b054b74040bf5859636f2377eb79812d8a583c0ed1/edaeasy-1.2.9.tar.gz",
    "platform": null,
    "description": "# EDAeasy \ud83d\ude00\nThe package for quick exploratory data analysis\n\n\n## Instalation \n\n`pip install EDAeasy`\n\n## Usage\nThe **dataframe_summary** function have relative simple summary of the columns of your dataframe\nfor quick look at tabular data\n\n    Generate a summary DataFrame of the input DataFrame 'dataframe'.\n\n    Parameters\n    ----------\n    dataframe : pandas.DataFrame\n        The input DataFrame for which the summary needs to be generated.\n\n    Returns\n    -------\n    pandas.DataFrame\n        A DataFrame containing summary information for each column in 'df':\n        - Type: Data type of the column.\n        - Min: Minimum value in the column.\n        - Max: Maximum value in the column.\n        - Nan %: Percentage of NaN values in the column.\n        - # Unique Values: Total number of unique values in the column.\n        - Unique values: List of unique values in the column.\n\n    Example\n    -------\n    >>> data = {\n            'age': ['[40-50)', '[60-70)', '[70-80)'],\n            'time_in_hospital': [8, 3, 5],\n            'n_lab_procedures': [72, 34, 45],\n            ...\n        }\n    >>> dataframe = pd.DataFrame(data)\n    >>> result = dataframe_summary(df)\n    >>> print(result)\n               Type       Min        Max  Nan %  # Unique Values                                  Unique values\n    Variables                                                                                                              \n    age       object   [40-50)    [90-100)    0.0        3      ['[70-80)', '[50-60)', '[60-70)', '[40-50)', '[80-90)', ...\n    time_in_hospital  int64    1           14    0.0        3        [8, 3, 5]\n    n_lab_procedures  int64    1          113    0.0        3        [72, 34, 45]\n    ...\n\n    Note\n    ----\n    The function uses vectorized operations to improve performance and memory usage.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Functions and tools for making Exploratory Data Analysis easy!",
    "version": "1.2.9",
    "project_urls": null,
    "split_keywords": [
        "exploratory analysis",
        " eda"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b98c2ca847f07c2415684a6abe05f66c1ad6f21e051460ff1d125e0e702a2a45",
                "md5": "7c6a15526ee75771d1737d58dcb3fa0f",
                "sha256": "108d02a29725142c2ccb555f7510c8e8276b0287f71ad5595e612a4ce90f0c5e"
            },
            "downloads": -1,
            "filename": "edaeasy-1.2.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7c6a15526ee75771d1737d58dcb3fa0f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 9237,
            "upload_time": "2024-11-17T23:04:41",
            "upload_time_iso_8601": "2024-11-17T23:04:41.301343Z",
            "url": "https://files.pythonhosted.org/packages/b9/8c/2ca847f07c2415684a6abe05f66c1ad6f21e051460ff1d125e0e702a2a45/edaeasy-1.2.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a513705f97a71542a6dfb8b054b74040bf5859636f2377eb79812d8a583c0ed1",
                "md5": "902d383b8903ebee0fe40413b25456e4",
                "sha256": "3b264f2cdfaa9cd6874417e3bbb490cf7fa7bf5a59fbcfc6773228f5259c0155"
            },
            "downloads": -1,
            "filename": "edaeasy-1.2.9.tar.gz",
            "has_sig": false,
            "md5_digest": "902d383b8903ebee0fe40413b25456e4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 7993,
            "upload_time": "2024-11-17T23:04:42",
            "upload_time_iso_8601": "2024-11-17T23:04:42.281440Z",
            "url": "https://files.pythonhosted.org/packages/a5/13/705f97a71542a6dfb8b054b74040bf5859636f2377eb79812d8a583c0ed1/edaeasy-1.2.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-17 23:04:42",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "edaeasy"
}
        
Elapsed time: 1.27271s