# EDAeasy 😀
The package for quick exploratory data analysis
## Instalation
`pip install EDAeasy`
## Usage
The **dataframe_summary** function have relative simple summary of the columns of your dataframe
for quick look at tabular data
Generate a summary DataFrame of the input DataFrame 'dataframe'.
Parameters
----------
dataframe : pandas.DataFrame
The input DataFrame for which the summary needs to be generated.
Returns
-------
pandas.DataFrame
A DataFrame containing summary information for each column in 'df':
- Type: Data type of the column.
- Min: Minimum value in the column.
- Max: Maximum value in the column.
- Nan %: Percentage of NaN values in the column.
- # Unique Values: Total number of unique values in the column.
- Unique values: List of unique values in the column.
Example
-------
>>> data = {
'age': ['[40-50)', '[60-70)', '[70-80)'],
'time_in_hospital': [8, 3, 5],
'n_lab_procedures': [72, 34, 45],
...
}
>>> dataframe = pd.DataFrame(data)
>>> result = dataframe_summary(df)
>>> print(result)
Type Min Max Nan % # Unique Values Unique values
Variables
age object [40-50) [90-100) 0.0 3 ['[70-80)', '[50-60)', '[60-70)', '[40-50)', '[80-90)', ...
time_in_hospital int64 1 14 0.0 3 [8, 3, 5]
n_lab_procedures int64 1 113 0.0 3 [72, 34, 45]
...
Note
----
The function uses vectorized operations to improve performance and memory usage.
Raw data
{
"_id": null,
"home_page": null,
"name": "EDAeasy",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": "Exploratory Analysis, EDA",
"author": "Francisco Jesus Ocazionez Cardozo",
"author_email": "pach812@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/a5/13/705f97a71542a6dfb8b054b74040bf5859636f2377eb79812d8a583c0ed1/edaeasy-1.2.9.tar.gz",
"platform": null,
"description": "# EDAeasy \ud83d\ude00\nThe package for quick exploratory data analysis\n\n\n## Instalation \n\n`pip install EDAeasy`\n\n## Usage\nThe **dataframe_summary** function have relative simple summary of the columns of your dataframe\nfor quick look at tabular data\n\n Generate a summary DataFrame of the input DataFrame 'dataframe'.\n\n Parameters\n ----------\n dataframe : pandas.DataFrame\n The input DataFrame for which the summary needs to be generated.\n\n Returns\n -------\n pandas.DataFrame\n A DataFrame containing summary information for each column in 'df':\n - Type: Data type of the column.\n - Min: Minimum value in the column.\n - Max: Maximum value in the column.\n - Nan %: Percentage of NaN values in the column.\n - # Unique Values: Total number of unique values in the column.\n - Unique values: List of unique values in the column.\n\n Example\n -------\n >>> data = {\n 'age': ['[40-50)', '[60-70)', '[70-80)'],\n 'time_in_hospital': [8, 3, 5],\n 'n_lab_procedures': [72, 34, 45],\n ...\n }\n >>> dataframe = pd.DataFrame(data)\n >>> result = dataframe_summary(df)\n >>> print(result)\n Type Min Max Nan % # Unique Values Unique values\n Variables \n age object [40-50) [90-100) 0.0 3 ['[70-80)', '[50-60)', '[60-70)', '[40-50)', '[80-90)', ...\n time_in_hospital int64 1 14 0.0 3 [8, 3, 5]\n n_lab_procedures int64 1 113 0.0 3 [72, 34, 45]\n ...\n\n Note\n ----\n The function uses vectorized operations to improve performance and memory usage.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Functions and tools for making Exploratory Data Analysis easy!",
"version": "1.2.9",
"project_urls": null,
"split_keywords": [
"exploratory analysis",
" eda"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b98c2ca847f07c2415684a6abe05f66c1ad6f21e051460ff1d125e0e702a2a45",
"md5": "7c6a15526ee75771d1737d58dcb3fa0f",
"sha256": "108d02a29725142c2ccb555f7510c8e8276b0287f71ad5595e612a4ce90f0c5e"
},
"downloads": -1,
"filename": "edaeasy-1.2.9-py3-none-any.whl",
"has_sig": false,
"md5_digest": "7c6a15526ee75771d1737d58dcb3fa0f",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 9237,
"upload_time": "2024-11-17T23:04:41",
"upload_time_iso_8601": "2024-11-17T23:04:41.301343Z",
"url": "https://files.pythonhosted.org/packages/b9/8c/2ca847f07c2415684a6abe05f66c1ad6f21e051460ff1d125e0e702a2a45/edaeasy-1.2.9-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a513705f97a71542a6dfb8b054b74040bf5859636f2377eb79812d8a583c0ed1",
"md5": "902d383b8903ebee0fe40413b25456e4",
"sha256": "3b264f2cdfaa9cd6874417e3bbb490cf7fa7bf5a59fbcfc6773228f5259c0155"
},
"downloads": -1,
"filename": "edaeasy-1.2.9.tar.gz",
"has_sig": false,
"md5_digest": "902d383b8903ebee0fe40413b25456e4",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 7993,
"upload_time": "2024-11-17T23:04:42",
"upload_time_iso_8601": "2024-11-17T23:04:42.281440Z",
"url": "https://files.pythonhosted.org/packages/a5/13/705f97a71542a6dfb8b054b74040bf5859636f2377eb79812d8a583c0ed1/edaeasy-1.2.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-17 23:04:42",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "edaeasy"
}