Ekaspreet-topsis-102017078


NameEkaspreet-topsis-102017078 JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/Ekaspreet20/Ekaspreet_topsis_102017078
SummaryA Python package implementing TOPSIS for MCDM
upload_time2023-01-22 16:43:13
maintainer
docs_urlNone
authorEkaspreet kaur
requires_python
licenseMIT
keywords python topsis mcdm mcda statistics prescriptive analytics cli
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Ekaspreet-topsis-102017078


# Topsis in Python  
Author: **Ekaspreet 102017078**  
Maintainer: **Ekaspreet <ekaspreet0209@gmail.com>**.

TOPSIS: It is a for Multiple Criteria Decision Making,A Technique for Order Preference by Similarity to Ideal   
More details at [wikipedia](https://en.wikipedia.org/wiki/TOPSIS).  
<br>
<br>


### In Command Prompt

```
>> topsis data.csv "1,1,1,1" "+,+,-,+" result.csv
```

## Input file (data.csv)
| Model | Correlation | R<sup>2</sup> | RMSE | Accuracy | 
| ----- | ----------- | ------------- | ---- | -------- |
| M1    | 0.79        | 0.62          | 1.25 | 60.89    |
| M2    | 0.66        | 0.44          | 2.89 | 63.07    |
| M3    | 0.56        | 0.31          | 1.57 | 62.87    |
| M4    | 0.82        | 0.67          | 2.68 | 70.19    |
| M5    | 0.75        | 0.56          | 1.3  | 80.39    |

Weights (`weights`) is not already normalised will be normalised later in the code.

Information of positive(+) or negative(-) impact criteria should be provided in `impacts`.

<br>

## Output file (result.csv)

| Model | Correlation | R<sup>2</sup> | RMSE | Accuracy | Score  | Rank |
| ----- | ----------- | ------------- | ---- | -------- | ------ | ---- |
| M1    | 0.79        | 0.62          | 1.25 | 60.89    | 0.7722 | 2    |
| M2    | 0.66        | 0.44          | 2.89 | 63.07    | 0.2255 | 5    |
| M3    | 0.56        | 0.31          | 1.57 | 62.87    | 0.4388 | 4    |
| M4    | 0.82        | 0.67          | 2.68 | 70.19    | 0.5238 | 3    |
| M5    | 0.75        | 0.56          | 1.3  | 80.39    | 0.8113 | 1    |

<br>
The output file contains columns of input file along with two additional columns having **Score** and **Rank**

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Ekaspreet20/Ekaspreet_topsis_102017078",
    "name": "Ekaspreet-topsis-102017078",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,TOPSIS,MCDM,MCDA,statistics,prescriptive analytics,cli",
    "author": "Ekaspreet kaur",
    "author_email": "ekaspreet0209@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/2d/2e/2d9d85fc630e7fd384321e3bdb695262c532aeabb67d948b58bdbdb8cb6a/Ekaspreet-topsis-102017078-1.0.1.tar.gz",
    "platform": null,
    "description": "Ekaspreet-topsis-102017078\r\n\r\n\r\n# Topsis in Python  \r\nAuthor: **Ekaspreet 102017078**  \r\nMaintainer: **Ekaspreet <ekaspreet0209@gmail.com>**.\r\n\r\nTOPSIS: It is a for Multiple Criteria Decision Making,A Technique for Order Preference by Similarity to Ideal   \r\nMore details at [wikipedia](https://en.wikipedia.org/wiki/TOPSIS).  \r\n<br>\r\n<br>\r\n\r\n\r\n### In Command Prompt\r\n\r\n```\r\n>> topsis data.csv \"1,1,1,1\" \"+,+,-,+\" result.csv\r\n```\r\n\r\n## Input file (data.csv)\r\n| Model | Correlation | R<sup>2</sup> | RMSE | Accuracy | \r\n| ----- | ----------- | ------------- | ---- | -------- |\r\n| M1    | 0.79        | 0.62          | 1.25 | 60.89    |\r\n| M2    | 0.66        | 0.44          | 2.89 | 63.07    |\r\n| M3    | 0.56        | 0.31          | 1.57 | 62.87    |\r\n| M4    | 0.82        | 0.67          | 2.68 | 70.19    |\r\n| M5    | 0.75        | 0.56          | 1.3  | 80.39    |\r\n\r\nWeights (`weights`) is not already normalised will be normalised later in the code.\r\n\r\nInformation of positive(+) or negative(-) impact criteria should be provided in `impacts`.\r\n\r\n<br>\r\n\r\n## Output file (result.csv)\r\n\r\n| Model | Correlation | R<sup>2</sup> | RMSE | Accuracy | Score  | Rank |\r\n| ----- | ----------- | ------------- | ---- | -------- | ------ | ---- |\r\n| M1    | 0.79        | 0.62          | 1.25 | 60.89    | 0.7722 | 2    |\r\n| M2    | 0.66        | 0.44          | 2.89 | 63.07    | 0.2255 | 5    |\r\n| M3    | 0.56        | 0.31          | 1.57 | 62.87    | 0.4388 | 4    |\r\n| M4    | 0.82        | 0.67          | 2.68 | 70.19    | 0.5238 | 3    |\r\n| M5    | 0.75        | 0.56          | 1.3  | 80.39    | 0.8113 | 1    |\r\n\r\n<br>\r\nThe output file contains columns of input file along with two additional columns having **Score** and **Rank**\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python package implementing TOPSIS for MCDM",
    "version": "1.0.1",
    "split_keywords": [
        "python",
        "topsis",
        "mcdm",
        "mcda",
        "statistics",
        "prescriptive analytics",
        "cli"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "53d02c78d83fe7a399cd0d4a76f5467ff3740acd967aa541ac0eb308d53d132d",
                "md5": "8006019f6a9e2e84d59755aad38223ae",
                "sha256": "3583030b61cdba8d37db6f4f18e2f0ce7edb4bd79f72d41f14155702e5e23587"
            },
            "downloads": -1,
            "filename": "Ekaspreet_topsis_102017078-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8006019f6a9e2e84d59755aad38223ae",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 4818,
            "upload_time": "2023-01-22T16:43:11",
            "upload_time_iso_8601": "2023-01-22T16:43:11.849492Z",
            "url": "https://files.pythonhosted.org/packages/53/d0/2c78d83fe7a399cd0d4a76f5467ff3740acd967aa541ac0eb308d53d132d/Ekaspreet_topsis_102017078-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2d2e2d9d85fc630e7fd384321e3bdb695262c532aeabb67d948b58bdbdb8cb6a",
                "md5": "8b1d880cedb33e88c34fd3f448feb1dd",
                "sha256": "b24815cec11f7862f367db4f4746916bbec680a49c24ce33e0425e04224f0379"
            },
            "downloads": -1,
            "filename": "Ekaspreet-topsis-102017078-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "8b1d880cedb33e88c34fd3f448feb1dd",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4404,
            "upload_time": "2023-01-22T16:43:13",
            "upload_time_iso_8601": "2023-01-22T16:43:13.687444Z",
            "url": "https://files.pythonhosted.org/packages/2d/2e/2d9d85fc630e7fd384321e3bdb695262c532aeabb67d948b58bdbdb8cb6a/Ekaspreet-topsis-102017078-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-22 16:43:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "Ekaspreet20",
    "github_project": "Ekaspreet_topsis_102017078",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "ekaspreet-topsis-102017078"
}
        
Elapsed time: 0.12770s