Ekaspreet-topsis-102017078
# Topsis in Python
Author: **Ekaspreet 102017078**
Maintainer: **Ekaspreet <ekaspreet0209@gmail.com>**.
TOPSIS: It is a for Multiple Criteria Decision Making,A Technique for Order Preference by Similarity to Ideal
More details at [wikipedia](https://en.wikipedia.org/wiki/TOPSIS).
<br>
<br>
### In Command Prompt
```
>> topsis data.csv "1,1,1,1" "+,+,-,+" result.csv
```
## Input file (data.csv)
| Model | Correlation | R<sup>2</sup> | RMSE | Accuracy |
| ----- | ----------- | ------------- | ---- | -------- |
| M1 | 0.79 | 0.62 | 1.25 | 60.89 |
| M2 | 0.66 | 0.44 | 2.89 | 63.07 |
| M3 | 0.56 | 0.31 | 1.57 | 62.87 |
| M4 | 0.82 | 0.67 | 2.68 | 70.19 |
| M5 | 0.75 | 0.56 | 1.3 | 80.39 |
Weights (`weights`) is not already normalised will be normalised later in the code.
Information of positive(+) or negative(-) impact criteria should be provided in `impacts`.
<br>
## Output file (result.csv)
| Model | Correlation | R<sup>2</sup> | RMSE | Accuracy | Score | Rank |
| ----- | ----------- | ------------- | ---- | -------- | ------ | ---- |
| M1 | 0.79 | 0.62 | 1.25 | 60.89 | 0.7722 | 2 |
| M2 | 0.66 | 0.44 | 2.89 | 63.07 | 0.2255 | 5 |
| M3 | 0.56 | 0.31 | 1.57 | 62.87 | 0.4388 | 4 |
| M4 | 0.82 | 0.67 | 2.68 | 70.19 | 0.5238 | 3 |
| M5 | 0.75 | 0.56 | 1.3 | 80.39 | 0.8113 | 1 |
<br>
The output file contains columns of input file along with two additional columns having **Score** and **Rank**
Raw data
{
"_id": null,
"home_page": "https://github.com/Ekaspreet20/Ekaspreet_topsis_102017078",
"name": "Ekaspreet-topsis-102017078",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "python,TOPSIS,MCDM,MCDA,statistics,prescriptive analytics,cli",
"author": "Ekaspreet kaur",
"author_email": "ekaspreet0209@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/2d/2e/2d9d85fc630e7fd384321e3bdb695262c532aeabb67d948b58bdbdb8cb6a/Ekaspreet-topsis-102017078-1.0.1.tar.gz",
"platform": null,
"description": "Ekaspreet-topsis-102017078\r\n\r\n\r\n# Topsis in Python \r\nAuthor: **Ekaspreet 102017078** \r\nMaintainer: **Ekaspreet <ekaspreet0209@gmail.com>**.\r\n\r\nTOPSIS: It is a for Multiple Criteria Decision Making,A Technique for Order Preference by Similarity to Ideal \r\nMore details at [wikipedia](https://en.wikipedia.org/wiki/TOPSIS). \r\n<br>\r\n<br>\r\n\r\n\r\n### In Command Prompt\r\n\r\n```\r\n>> topsis data.csv \"1,1,1,1\" \"+,+,-,+\" result.csv\r\n```\r\n\r\n## Input file (data.csv)\r\n| Model | Correlation | R<sup>2</sup> | RMSE | Accuracy | \r\n| ----- | ----------- | ------------- | ---- | -------- |\r\n| M1 | 0.79 | 0.62 | 1.25 | 60.89 |\r\n| M2 | 0.66 | 0.44 | 2.89 | 63.07 |\r\n| M3 | 0.56 | 0.31 | 1.57 | 62.87 |\r\n| M4 | 0.82 | 0.67 | 2.68 | 70.19 |\r\n| M5 | 0.75 | 0.56 | 1.3 | 80.39 |\r\n\r\nWeights (`weights`) is not already normalised will be normalised later in the code.\r\n\r\nInformation of positive(+) or negative(-) impact criteria should be provided in `impacts`.\r\n\r\n<br>\r\n\r\n## Output file (result.csv)\r\n\r\n| Model | Correlation | R<sup>2</sup> | RMSE | Accuracy | Score | Rank |\r\n| ----- | ----------- | ------------- | ---- | -------- | ------ | ---- |\r\n| M1 | 0.79 | 0.62 | 1.25 | 60.89 | 0.7722 | 2 |\r\n| M2 | 0.66 | 0.44 | 2.89 | 63.07 | 0.2255 | 5 |\r\n| M3 | 0.56 | 0.31 | 1.57 | 62.87 | 0.4388 | 4 |\r\n| M4 | 0.82 | 0.67 | 2.68 | 70.19 | 0.5238 | 3 |\r\n| M5 | 0.75 | 0.56 | 1.3 | 80.39 | 0.8113 | 1 |\r\n\r\n<br>\r\nThe output file contains columns of input file along with two additional columns having **Score** and **Rank**\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Python package implementing TOPSIS for MCDM",
"version": "1.0.1",
"split_keywords": [
"python",
"topsis",
"mcdm",
"mcda",
"statistics",
"prescriptive analytics",
"cli"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "53d02c78d83fe7a399cd0d4a76f5467ff3740acd967aa541ac0eb308d53d132d",
"md5": "8006019f6a9e2e84d59755aad38223ae",
"sha256": "3583030b61cdba8d37db6f4f18e2f0ce7edb4bd79f72d41f14155702e5e23587"
},
"downloads": -1,
"filename": "Ekaspreet_topsis_102017078-1.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8006019f6a9e2e84d59755aad38223ae",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 4818,
"upload_time": "2023-01-22T16:43:11",
"upload_time_iso_8601": "2023-01-22T16:43:11.849492Z",
"url": "https://files.pythonhosted.org/packages/53/d0/2c78d83fe7a399cd0d4a76f5467ff3740acd967aa541ac0eb308d53d132d/Ekaspreet_topsis_102017078-1.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2d2e2d9d85fc630e7fd384321e3bdb695262c532aeabb67d948b58bdbdb8cb6a",
"md5": "8b1d880cedb33e88c34fd3f448feb1dd",
"sha256": "b24815cec11f7862f367db4f4746916bbec680a49c24ce33e0425e04224f0379"
},
"downloads": -1,
"filename": "Ekaspreet-topsis-102017078-1.0.1.tar.gz",
"has_sig": false,
"md5_digest": "8b1d880cedb33e88c34fd3f448feb1dd",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 4404,
"upload_time": "2023-01-22T16:43:13",
"upload_time_iso_8601": "2023-01-22T16:43:13.687444Z",
"url": "https://files.pythonhosted.org/packages/2d/2e/2d9d85fc630e7fd384321e3bdb695262c532aeabb67d948b58bdbdb8cb6a/Ekaspreet-topsis-102017078-1.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-01-22 16:43:13",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "Ekaspreet20",
"github_project": "Ekaspreet_topsis_102017078",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "ekaspreet-topsis-102017078"
}