Ekidna


NameEkidna JSON
Version 0.0.9 PyPI version JSON
download
home_page
SummaryElectrochemistry data analysis tools
upload_time2024-02-21 21:02:47
maintainer
docs_urlNone
authorOzymandiasTheDead
requires_python
licenseMIT
keywords ekidna
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            This library contains functions and classes for analysis of, primarily, data collected from 
electrochemistry experiments. Various functions may be useful beyond the scope of electrochemistry.

Examples of tools include: baseline subtraction, pairplots, histograms, standard curve creators, smoothing, etc . . . 

The code is developed by researchers at Ekidna Sensing.



Change Log
===========
0.0.9 (February 14, 2024)
-------------------------
- Ninth Release

Notes:
------
Adjusted existing moving_average_baseline_subtraction function to take a new input, max_iter, which
specifies the maximum number of iterations to be performed by the baseline subtraction algorithm.


Added functions (see "module contents" document for descriptions of these functions):
- running_sd 
- running_mean 
- fitRandlesSevcikModels 
- RS_solution_resistance
- RS_linear_self_blocking
- RS_anomalous_diffusion
- RS_linear_self_blocking_anomalous_diffusion
- RS_basic
- plotRSModels


Added classes (see "module contents" document for descriptions of classes)
- double_power_std_curve
- self_resistance_std_curve

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "Ekidna",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "Ekidna",
    "author": "OzymandiasTheDead",
    "author_email": "jacob@ekidnasensing.com",
    "download_url": "https://files.pythonhosted.org/packages/ac/95/9b986f43610ba8d3c3e3ed2d8209e70d5aa8cf465269643c0a7a9344e9e5/Ekidna-0.0.9.tar.gz",
    "platform": null,
    "description": "This library contains functions and classes for analysis of, primarily, data collected from \r\nelectrochemistry experiments. Various functions may be useful beyond the scope of electrochemistry.\r\n\r\nExamples of tools include: baseline subtraction, pairplots, histograms, standard curve creators, smoothing, etc . . . \r\n\r\nThe code is developed by researchers at Ekidna Sensing.\r\n\r\n\r\n\r\nChange Log\r\n===========\r\n0.0.9 (February 14, 2024)\r\n-------------------------\r\n- Ninth Release\r\n\r\nNotes:\r\n------\r\nAdjusted existing moving_average_baseline_subtraction function to take a new input, max_iter, which\r\nspecifies the maximum number of iterations to be performed by the baseline subtraction algorithm.\r\n\r\n\r\nAdded functions (see \"module contents\" document for descriptions of these functions):\r\n- running_sd \r\n- running_mean \r\n- fitRandlesSevcikModels \r\n- RS_solution_resistance\r\n- RS_linear_self_blocking\r\n- RS_anomalous_diffusion\r\n- RS_linear_self_blocking_anomalous_diffusion\r\n- RS_basic\r\n- plotRSModels\r\n\r\n\r\nAdded classes (see \"module contents\" document for descriptions of classes)\r\n- double_power_std_curve\r\n- self_resistance_std_curve\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Electrochemistry data analysis tools",
    "version": "0.0.9",
    "project_urls": null,
    "split_keywords": [
        "ekidna"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ac959b986f43610ba8d3c3e3ed2d8209e70d5aa8cf465269643c0a7a9344e9e5",
                "md5": "2bbc7236a0e4b389d6192980d173d7ce",
                "sha256": "e0aca3367d413fca92cd3330271e1850e12e8dfe080fdfeca10c0818774d0cf9"
            },
            "downloads": -1,
            "filename": "Ekidna-0.0.9.tar.gz",
            "has_sig": false,
            "md5_digest": "2bbc7236a0e4b389d6192980d173d7ce",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 29312,
            "upload_time": "2024-02-21T21:02:47",
            "upload_time_iso_8601": "2024-02-21T21:02:47.409668Z",
            "url": "https://files.pythonhosted.org/packages/ac/95/9b986f43610ba8d3c3e3ed2d8209e70d5aa8cf465269643c0a7a9344e9e5/Ekidna-0.0.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-21 21:02:47",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "ekidna"
}
        
Elapsed time: 0.19030s