Fast-Profiling-UI


NameFast-Profiling-UI JSON
Version 0.3 PyPI version JSON
download
home_pageNone
SummaryAn Exploratory Data Analysis Package for Data Engineers With UI
upload_time2024-06-19 00:20:09
maintainerNone
docs_urlNone
authorMukesh
requires_python>=3.6
licenseNone
keywords python pandas numpy tkinter eda data analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Fast_Profiling_UI

Fast_Profiling_UI is an Exploratory Data Analysis (EDA) package designed for data engineers, providing a user-friendly UI to perform various data analysis tasks efficiently. This package leverages `pandas`, `numpy`, and `tkinter` to offer insightful and interactive data analysis.

## Features

- **Overview**: Get a comprehensive summary of your dataset, including statistics such as the number of columns, rows, duplicate rows, missing values, and memory usage.
- **Sample**: View sample data from the dataset, including top and bottom rows.
- **Variables**: Analyze individual columns, displaying statistics such as distinct values, missing values, mean, minimum, maximum, and more.

## Installation

To install the Fast_Profiling_UI package, you need to have Python 3.6 or later installed on your system. You can install the package using `pip`:

```sh
pip install Fast_Profiling_UI
```

## Usage

Here's a quick guide on how to use the Fast_Profiling_UI package.

### Importing the Package

First, import the package in your Python script:

```python
import Fast_Profiling_UI
```

### Loading a DataFrame

Load your data into a pandas DataFrame. For example:

```python
import pandas as pd

# Load your dataset
df = pd.read_csv('your_data.csv')
```

### Performing EDA

Use the `de_analysis` function to start the UI for exploratory data analysis:

```python
Fast_Profiling_UI.de_analysis(df)
```

This will open a UI window with buttons for different analysis options:

- **Overview**: Provides a summary of the dataset.
- **Missing Values**: Analyzes and displays missing values in the dataset.
- **Variable**: Displays detailed statistics for each column in the dataset.
- **Sample**: Allows viewing samples of the dataset (top and bottom rows).

## Detailed Example

Here is a detailed example to help you get started:

```python
import pandas as pd
import Fast_Profiling_UI

# Load your dataset
df = pd.read_csv('your_data.csv')

# Start the EDA UI
Fast_Profiling_UI.de_analysis(df)
```

## Development

### Setting Up the Development Environment

If you want to contribute to the development of Fast_Profiling_UI, follow these steps to set up your development environment:

1. Clone the repository:
    ```sh
    git clone https://github.com/Mukesh-Kumar-Madhur
    cd Fast_Profiling_UI
    ```

2. Create a virtual environment:
    ```sh
    python -m venv venv
    ```

3. Activate the virtual environment:

    - On Windows:
        ```sh
        venv\Scripts\activate
        ```

    - On macOS and Linux:
        ```sh
        source venv/bin/activate
        ```

4. Install the package in development mode:
    ```sh
    pip install -e .
    ```

### Running Tests

Ensure your changes do not break any functionality by running tests. You can add tests in the `tests` directory and run them using a testing framework like `pytest`.

### Code Structure

- `Fast_Profiling_UI/`
    - `__init__.py`: Initializes the package and defines the main `de_analysis` function.
    - `Sample.py`: Defines the `Sample` function for displaying sample data.
    - `Variables.py`: Defines the `Variables` function for analyzing individual columns.
    - `Overview.py`: Defines the `show_overview` function for summarizing the dataset.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "Fast-Profiling-UI",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "python, pandas, numpy, tkinter, eda, data analysis",
    "author": "Mukesh",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/7b/31/06e06d1c7049106e243778ae4ddba5d208b2ef6a85842211f17403aa5eff/fast_profiling_ui-0.3.tar.gz",
    "platform": null,
    "description": "# Fast_Profiling_UI\r\n\r\nFast_Profiling_UI is an Exploratory Data Analysis (EDA) package designed for data engineers, providing a user-friendly UI to perform various data analysis tasks efficiently. This package leverages `pandas`, `numpy`, and `tkinter` to offer insightful and interactive data analysis.\r\n\r\n## Features\r\n\r\n- **Overview**: Get a comprehensive summary of your dataset, including statistics such as the number of columns, rows, duplicate rows, missing values, and memory usage.\r\n- **Sample**: View sample data from the dataset, including top and bottom rows.\r\n- **Variables**: Analyze individual columns, displaying statistics such as distinct values, missing values, mean, minimum, maximum, and more.\r\n\r\n## Installation\r\n\r\nTo install the Fast_Profiling_UI package, you need to have Python 3.6 or later installed on your system. You can install the package using `pip`:\r\n\r\n```sh\r\npip install Fast_Profiling_UI\r\n```\r\n\r\n## Usage\r\n\r\nHere's a quick guide on how to use the Fast_Profiling_UI package.\r\n\r\n### Importing the Package\r\n\r\nFirst, import the package in your Python script:\r\n\r\n```python\r\nimport Fast_Profiling_UI\r\n```\r\n\r\n### Loading a DataFrame\r\n\r\nLoad your data into a pandas DataFrame. For example:\r\n\r\n```python\r\nimport pandas as pd\r\n\r\n# Load your dataset\r\ndf = pd.read_csv('your_data.csv')\r\n```\r\n\r\n### Performing EDA\r\n\r\nUse the `de_analysis` function to start the UI for exploratory data analysis:\r\n\r\n```python\r\nFast_Profiling_UI.de_analysis(df)\r\n```\r\n\r\nThis will open a UI window with buttons for different analysis options:\r\n\r\n- **Overview**: Provides a summary of the dataset.\r\n- **Missing Values**: Analyzes and displays missing values in the dataset.\r\n- **Variable**: Displays detailed statistics for each column in the dataset.\r\n- **Sample**: Allows viewing samples of the dataset (top and bottom rows).\r\n\r\n## Detailed Example\r\n\r\nHere is a detailed example to help you get started:\r\n\r\n```python\r\nimport pandas as pd\r\nimport Fast_Profiling_UI\r\n\r\n# Load your dataset\r\ndf = pd.read_csv('your_data.csv')\r\n\r\n# Start the EDA UI\r\nFast_Profiling_UI.de_analysis(df)\r\n```\r\n\r\n## Development\r\n\r\n### Setting Up the Development Environment\r\n\r\nIf you want to contribute to the development of Fast_Profiling_UI, follow these steps to set up your development environment:\r\n\r\n1. Clone the repository:\r\n    ```sh\r\n    git clone https://github.com/Mukesh-Kumar-Madhur\r\n    cd Fast_Profiling_UI\r\n    ```\r\n\r\n2. Create a virtual environment:\r\n    ```sh\r\n    python -m venv venv\r\n    ```\r\n\r\n3. Activate the virtual environment:\r\n\r\n    - On Windows:\r\n        ```sh\r\n        venv\\Scripts\\activate\r\n        ```\r\n\r\n    - On macOS and Linux:\r\n        ```sh\r\n        source venv/bin/activate\r\n        ```\r\n\r\n4. Install the package in development mode:\r\n    ```sh\r\n    pip install -e .\r\n    ```\r\n\r\n### Running Tests\r\n\r\nEnsure your changes do not break any functionality by running tests. You can add tests in the `tests` directory and run them using a testing framework like `pytest`.\r\n\r\n### Code Structure\r\n\r\n- `Fast_Profiling_UI/`\r\n    - `__init__.py`: Initializes the package and defines the main `de_analysis` function.\r\n    - `Sample.py`: Defines the `Sample` function for displaying sample data.\r\n    - `Variables.py`: Defines the `Variables` function for analyzing individual columns.\r\n    - `Overview.py`: Defines the `show_overview` function for summarizing the dataset.\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "An Exploratory Data Analysis Package for Data Engineers With UI",
    "version": "0.3",
    "project_urls": null,
    "split_keywords": [
        "python",
        " pandas",
        " numpy",
        " tkinter",
        " eda",
        " data analysis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "39d6b975b6976f02f98fa9fb48ff29798fbbad2d7f75f41e5edb714b776897ea",
                "md5": "9df22d4ca8fa3d8ac298d7979b84d428",
                "sha256": "e843781231b695b483f0f5ed6ebcef3f5bc14261f4757e8eaea61e96c67d0e17"
            },
            "downloads": -1,
            "filename": "Fast_Profiling_UI-0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9df22d4ca8fa3d8ac298d7979b84d428",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 7973,
            "upload_time": "2024-06-19T00:20:02",
            "upload_time_iso_8601": "2024-06-19T00:20:02.711341Z",
            "url": "https://files.pythonhosted.org/packages/39/d6/b975b6976f02f98fa9fb48ff29798fbbad2d7f75f41e5edb714b776897ea/Fast_Profiling_UI-0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7b3106e06d1c7049106e243778ae4ddba5d208b2ef6a85842211f17403aa5eff",
                "md5": "0a066ab4ab7de4da90f7a889ac68e372",
                "sha256": "ade6c81dad1b79730dad70a285b005b10d95abb9135436b62af846d99b0230df"
            },
            "downloads": -1,
            "filename": "fast_profiling_ui-0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "0a066ab4ab7de4da90f7a889ac68e372",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 6749,
            "upload_time": "2024-06-19T00:20:09",
            "upload_time_iso_8601": "2024-06-19T00:20:09.255646Z",
            "url": "https://files.pythonhosted.org/packages/7b/31/06e06d1c7049106e243778ae4ddba5d208b2ef6a85842211f17403aa5eff/fast_profiling_ui-0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-19 00:20:09",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "fast-profiling-ui"
}
        
Elapsed time: 3.21711s