Name | Fictometer JSON |
Version |
0.2.4
JSON |
| download |
home_page | None |
Summary | Classifies text as 'Fiction' or 'Non-Fiction'. |
upload_time | 2024-06-07 09:30:56 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.11.9 |
license | None |
keywords |
fictometer
fiction
non-fiction
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Fictometer
## Description
Fictometer is an algorithm for analysing whether the given text is ```Fiction``` or ```Non-Fiction```.
It first calculates the number of ```adverbs```, ```adjectives``` and ```pronouns``` in the text.
It then calculates Ratio of Adjective to Pronoun ```RADJPRON``` and Ratio of Adverb to Adjective ```RADVADJ```,
from which it predicts whether text is ```Fiction``` or ```Non-Fiction```.
Blog Link: 🔗[LINK](https://bekushal.medium.com/fictometer-a-simple-and-explainable-algorithm-for-sentiment-analysis-31186d2a8c7e)
## Installation
```bash
pip install Fictometer
```
## Usage
```bash
import Fictometer
text = "your_text"
pc = Fictometer.counts(text)
// returs the count of ```adjectives```, ```adverbs``` and ```pronouns```
result = Fictometer.predict(text)
// Uses counts(), then calculates RADJPRON and RADVADJ, and returns a tuple having 'result' and 'confidence'.
Fictometer.help()
// Shows how to use the package
```
## Contact
email - atmabodha@gmail.com
Raw data
{
"_id": null,
"home_page": null,
"name": "Fictometer",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.11.9",
"maintainer_email": null,
"keywords": "Fictometer, Fiction, Non-Fiction",
"author": null,
"author_email": "Kushal Shah <atmabodha@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/27/f2/f6d3fca068c0cec81a5ad70d9e2bb7376b71c2a17f915ab29f37cf94572c/fictometer-0.2.4.tar.gz",
"platform": null,
"description": "# Fictometer\n\n## Description\n\nFictometer is an algorithm for analysing whether the given text is ```Fiction``` or ```Non-Fiction```.\nIt first calculates the number of ```adverbs```, ```adjectives``` and ```pronouns``` in the text.\nIt then calculates Ratio of Adjective to Pronoun ```RADJPRON``` and Ratio of Adverb to Adjective ```RADVADJ```, \nfrom which it predicts whether text is ```Fiction``` or ```Non-Fiction```.\n\nBlog Link: \ud83d\udd17[LINK](https://bekushal.medium.com/fictometer-a-simple-and-explainable-algorithm-for-sentiment-analysis-31186d2a8c7e)\n\n\n## Installation\n\n```bash\npip install Fictometer\n```\n\n\n## Usage\n```bash\nimport Fictometer\n\ntext = \"your_text\"\n\npc = Fictometer.counts(text)\n// returs the count of ```adjectives```, ```adverbs``` and ```pronouns```\n\nresult = Fictometer.predict(text)\n// Uses counts(), then calculates RADJPRON and RADVADJ, and returns a tuple having 'result' and 'confidence'.\n\nFictometer.help()\n// Shows how to use the package\n```\n\n\n## Contact\n\nemail - atmabodha@gmail.com\n",
"bugtrack_url": null,
"license": null,
"summary": "Classifies text as 'Fiction' or 'Non-Fiction'.",
"version": "0.2.4",
"project_urls": {
"Homepage": "https://bekushal.medium.com/fictometer-a-simple-and-explainable-algorithm-for-sentiment-analysis-31186d2a8c7e"
},
"split_keywords": [
"fictometer",
" fiction",
" non-fiction"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "40357f122913d59c73809a6d4a447859de97081003813855023a408f6f079980",
"md5": "3dbb3fac1d6ba8c0e30224a81ffa71b6",
"sha256": "376a36a0cfa61f8bb8cb6ea32df4f41808dee5f166033306f455a233524eef93"
},
"downloads": -1,
"filename": "Fictometer-0.2.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3dbb3fac1d6ba8c0e30224a81ffa71b6",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11.9",
"size": 4403,
"upload_time": "2024-06-07T09:30:54",
"upload_time_iso_8601": "2024-06-07T09:30:54.025414Z",
"url": "https://files.pythonhosted.org/packages/40/35/7f122913d59c73809a6d4a447859de97081003813855023a408f6f079980/Fictometer-0.2.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "27f2f6d3fca068c0cec81a5ad70d9e2bb7376b71c2a17f915ab29f37cf94572c",
"md5": "4286102d0ff2a92561ba5238e8f9c5ab",
"sha256": "a95c9cba10b632496b42290263c6e2a0c49e625f6d5720bf3e2114b4e9fba8f9"
},
"downloads": -1,
"filename": "fictometer-0.2.4.tar.gz",
"has_sig": false,
"md5_digest": "4286102d0ff2a92561ba5238e8f9c5ab",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11.9",
"size": 4407,
"upload_time": "2024-06-07T09:30:56",
"upload_time_iso_8601": "2024-06-07T09:30:56.664149Z",
"url": "https://files.pythonhosted.org/packages/27/f2/f6d3fca068c0cec81a5ad70d9e2bb7376b71c2a17f915ab29f37cf94572c/fictometer-0.2.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-06-07 09:30:56",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "fictometer"
}