FluoSA


NameFluoSA JSON
Version 1.0.0 PyPI version JSON
download
home_pageNone
SummaryFluorescence Signal Analyzer for calcium imaging on user-defined neural structures.
upload_time2024-09-07 18:44:25
maintainerNone
docs_urlNone
authorNone
requires_python<3.11,>=3.9
licenseGPL-3.0
keywords fluorescence signal analysis calcium imaging analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FluoSA (Fluorescence Signal Analyzer)

<p>&nbsp;</p>

FluoSA inputs *.LIF and *.tif files, detects user-defined neural structures, and quantifies the fluorescence signal changes (frame-wise fluorescence intensity and the dF/F0) in these structures.

<p>&nbsp;</p>

The outputs of FluoSA include:

1. An annotated video showing the detected neural structures:

    ![alt text](https://github.com/yujiahu415/FluoSA/blob/main/Examples/Annotated_video.gif?raw=true) 

2. Spreadsheets storing frame-wise fluorescence intensity in each detected neural structure:

    ![alt text](https://github.com/yujiahu415/FluoSA/blob/main/Examples/Output_F.png?raw=true)

3. Spreadsheets storing summary of fluorescence signal changes (dF/F0) in each detected neural structure:

    ![alt text](https://github.com/yujiahu415/FluoSA/blob/main/Examples/Output_summary.png?raw=true)

<p>&nbsp;</p>

## Installation
### 1 Install FluoSA
```
python3 -m pip install FluoSA
```

### 2 Install CUDA toolkit v11.8
https://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Windows&target_arch=x86_64

### 3 Install Detectron2
```
python3 -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
```

### 4 Install PyTorch 2.0.1
#### 4.1 For Windows and Linux
##### 4.1.1 If using GPU
```
python3 -m pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118
```
##### 4.1.2 CPU only
```
python3 -m pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cpu
```
#### 4.2 For Mac
```
python3 -m pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2
```

<p>&nbsp;</p>

## Usage
In your terminal / command prompt, type:
```
FluoSA
```

Then the user interface will be initiated:

![alt text](https://github.com/yujiahu415/FluoSA/blob/main/Examples/GUI.png?raw=true) 


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "FluoSA",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.11,>=3.9",
    "maintainer_email": null,
    "keywords": "Fluorescence signal analysis, Calcium imaging analysis",
    "author": null,
    "author_email": "Yujia Hu <yujiahu415@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/ff/f3/c07ae8e5adde804c0e1f367e62565d892bdea820d077dc149f6fb7a9a568/fluosa-1.0.0.tar.gz",
    "platform": null,
    "description": "# FluoSA (Fluorescence Signal Analyzer)\n\n<p>&nbsp;</p>\n\nFluoSA inputs *.LIF and *.tif files, detects user-defined neural structures, and quantifies the fluorescence signal changes (frame-wise fluorescence intensity and the dF/F0) in these structures.\n\n<p>&nbsp;</p>\n\nThe outputs of FluoSA include:\n\n1. An annotated video showing the detected neural structures:\n\n    ![alt text](https://github.com/yujiahu415/FluoSA/blob/main/Examples/Annotated_video.gif?raw=true) \n\n2. Spreadsheets storing frame-wise fluorescence intensity in each detected neural structure:\n\n    ![alt text](https://github.com/yujiahu415/FluoSA/blob/main/Examples/Output_F.png?raw=true)\n\n3. Spreadsheets storing summary of fluorescence signal changes (dF/F0) in each detected neural structure:\n\n    ![alt text](https://github.com/yujiahu415/FluoSA/blob/main/Examples/Output_summary.png?raw=true)\n\n<p>&nbsp;</p>\n\n## Installation\n### 1 Install FluoSA\n```\npython3 -m pip install FluoSA\n```\n\n### 2 Install CUDA toolkit v11.8\nhttps://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Windows&target_arch=x86_64\n\n### 3 Install Detectron2\n```\npython3 -m pip install 'git+https://github.com/facebookresearch/detectron2.git'\n```\n\n### 4 Install PyTorch 2.0.1\n#### 4.1 For Windows and Linux\n##### 4.1.1 If using GPU\n```\npython3 -m pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118\n```\n##### 4.1.2 CPU only\n```\npython3 -m pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cpu\n```\n#### 4.2 For Mac\n```\npython3 -m pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2\n```\n\n<p>&nbsp;</p>\n\n## Usage\nIn your terminal / command prompt, type:\n```\nFluoSA\n```\n\nThen the user interface will be initiated:\n\n![alt text](https://github.com/yujiahu415/FluoSA/blob/main/Examples/GUI.png?raw=true) \n\n",
    "bugtrack_url": null,
    "license": "GPL-3.0",
    "summary": "Fluorescence Signal Analyzer for calcium imaging on user-defined neural structures.",
    "version": "1.0.0",
    "project_urls": {
        "Homepage": "https://github.com/umyelab/FluoSA"
    },
    "split_keywords": [
        "fluorescence signal analysis",
        " calcium imaging analysis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0943a152f7be138ad923e1d649c141b59db240989bcc79de6dcde53ebea91903",
                "md5": "4967c0e39c71b752c6c5c55ce12f70c1",
                "sha256": "0ba44f951a6df4e47859ccf03ab9628bf461b08828bf750562d48b74fdddf3bb"
            },
            "downloads": -1,
            "filename": "fluosa-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4967c0e39c71b752c6c5c55ce12f70c1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.11,>=3.9",
            "size": 31562,
            "upload_time": "2024-09-07T18:44:23",
            "upload_time_iso_8601": "2024-09-07T18:44:23.813065Z",
            "url": "https://files.pythonhosted.org/packages/09/43/a152f7be138ad923e1d649c141b59db240989bcc79de6dcde53ebea91903/fluosa-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fff3c07ae8e5adde804c0e1f367e62565d892bdea820d077dc149f6fb7a9a568",
                "md5": "2418715a2f69e364465078904a801e97",
                "sha256": "a7abe905e9fa8a2ff1c5454a3aa18307bde7d207393ff733854d7d1469586e0b"
            },
            "downloads": -1,
            "filename": "fluosa-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "2418715a2f69e364465078904a801e97",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.11,>=3.9",
            "size": 26929,
            "upload_time": "2024-09-07T18:44:25",
            "upload_time_iso_8601": "2024-09-07T18:44:25.387944Z",
            "url": "https://files.pythonhosted.org/packages/ff/f3/c07ae8e5adde804c0e1f367e62565d892bdea820d077dc149f6fb7a9a568/fluosa-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-07 18:44:25",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "umyelab",
    "github_project": "FluoSA",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fluosa"
}
        
Elapsed time: 0.30856s