# FluoSA (Fluorescence Signal Analyzer)
<p> </p>
FluoSA inputs *.LIF and *.tif files, detects user-defined neural structures, and quantifies the fluorescence signal changes (frame-wise fluorescence intensity and the dF/F0) in these structures.
<p> </p>
The outputs of FluoSA include:
1. An annotated video showing the detected neural structures:
![alt text](https://github.com/yujiahu415/FluoSA/blob/main/Examples/Annotated_video.gif?raw=true)
2. Spreadsheets storing frame-wise fluorescence intensity in each detected neural structure:
![alt text](https://github.com/yujiahu415/FluoSA/blob/main/Examples/Output_F.png?raw=true)
3. Spreadsheets storing summary of fluorescence signal changes (dF/F0) in each detected neural structure:
![alt text](https://github.com/yujiahu415/FluoSA/blob/main/Examples/Output_summary.png?raw=true)
<p> </p>
## Installation
### 1 Install FluoSA
```
python3 -m pip install FluoSA
```
### 2 Install CUDA toolkit v11.8
https://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Windows&target_arch=x86_64
### 3 Install Detectron2
```
python3 -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
```
### 4 Install PyTorch 2.0.1
#### 4.1 For Windows and Linux
##### 4.1.1 If using GPU
```
python3 -m pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118
```
##### 4.1.2 CPU only
```
python3 -m pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cpu
```
#### 4.2 For Mac
```
python3 -m pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2
```
<p> </p>
## Usage
In your terminal / command prompt, type:
```
FluoSA
```
Then the user interface will be initiated:
![alt text](https://github.com/yujiahu415/FluoSA/blob/main/Examples/GUI.png?raw=true)
Raw data
{
"_id": null,
"home_page": null,
"name": "FluoSA",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.11,>=3.9",
"maintainer_email": null,
"keywords": "Fluorescence signal analysis, Calcium imaging analysis",
"author": null,
"author_email": "Yujia Hu <yujiahu415@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/ff/f3/c07ae8e5adde804c0e1f367e62565d892bdea820d077dc149f6fb7a9a568/fluosa-1.0.0.tar.gz",
"platform": null,
"description": "# FluoSA (Fluorescence Signal Analyzer)\n\n<p> </p>\n\nFluoSA inputs *.LIF and *.tif files, detects user-defined neural structures, and quantifies the fluorescence signal changes (frame-wise fluorescence intensity and the dF/F0) in these structures.\n\n<p> </p>\n\nThe outputs of FluoSA include:\n\n1. An annotated video showing the detected neural structures:\n\n ![alt text](https://github.com/yujiahu415/FluoSA/blob/main/Examples/Annotated_video.gif?raw=true) \n\n2. Spreadsheets storing frame-wise fluorescence intensity in each detected neural structure:\n\n ![alt text](https://github.com/yujiahu415/FluoSA/blob/main/Examples/Output_F.png?raw=true)\n\n3. Spreadsheets storing summary of fluorescence signal changes (dF/F0) in each detected neural structure:\n\n ![alt text](https://github.com/yujiahu415/FluoSA/blob/main/Examples/Output_summary.png?raw=true)\n\n<p> </p>\n\n## Installation\n### 1 Install FluoSA\n```\npython3 -m pip install FluoSA\n```\n\n### 2 Install CUDA toolkit v11.8\nhttps://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Windows&target_arch=x86_64\n\n### 3 Install Detectron2\n```\npython3 -m pip install 'git+https://github.com/facebookresearch/detectron2.git'\n```\n\n### 4 Install PyTorch 2.0.1\n#### 4.1 For Windows and Linux\n##### 4.1.1 If using GPU\n```\npython3 -m pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118\n```\n##### 4.1.2 CPU only\n```\npython3 -m pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cpu\n```\n#### 4.2 For Mac\n```\npython3 -m pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2\n```\n\n<p> </p>\n\n## Usage\nIn your terminal / command prompt, type:\n```\nFluoSA\n```\n\nThen the user interface will be initiated:\n\n![alt text](https://github.com/yujiahu415/FluoSA/blob/main/Examples/GUI.png?raw=true) \n\n",
"bugtrack_url": null,
"license": "GPL-3.0",
"summary": "Fluorescence Signal Analyzer for calcium imaging on user-defined neural structures.",
"version": "1.0.0",
"project_urls": {
"Homepage": "https://github.com/umyelab/FluoSA"
},
"split_keywords": [
"fluorescence signal analysis",
" calcium imaging analysis"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "0943a152f7be138ad923e1d649c141b59db240989bcc79de6dcde53ebea91903",
"md5": "4967c0e39c71b752c6c5c55ce12f70c1",
"sha256": "0ba44f951a6df4e47859ccf03ab9628bf461b08828bf750562d48b74fdddf3bb"
},
"downloads": -1,
"filename": "fluosa-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4967c0e39c71b752c6c5c55ce12f70c1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.11,>=3.9",
"size": 31562,
"upload_time": "2024-09-07T18:44:23",
"upload_time_iso_8601": "2024-09-07T18:44:23.813065Z",
"url": "https://files.pythonhosted.org/packages/09/43/a152f7be138ad923e1d649c141b59db240989bcc79de6dcde53ebea91903/fluosa-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "fff3c07ae8e5adde804c0e1f367e62565d892bdea820d077dc149f6fb7a9a568",
"md5": "2418715a2f69e364465078904a801e97",
"sha256": "a7abe905e9fa8a2ff1c5454a3aa18307bde7d207393ff733854d7d1469586e0b"
},
"downloads": -1,
"filename": "fluosa-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "2418715a2f69e364465078904a801e97",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.11,>=3.9",
"size": 26929,
"upload_time": "2024-09-07T18:44:25",
"upload_time_iso_8601": "2024-09-07T18:44:25.387944Z",
"url": "https://files.pythonhosted.org/packages/ff/f3/c07ae8e5adde804c0e1f367e62565d892bdea820d077dc149f6fb7a9a568/fluosa-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-07 18:44:25",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "umyelab",
"github_project": "FluoSA",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fluosa"
}