Name | FrameStory JSON |
Version |
0.1.3
JSON |
| download |
home_page | https://github.com/chigwell/FrameStory |
Summary | A Python package for creating video descriptions by analyzing and extracting significant frames. |
upload_time | 2024-04-07 11:45:25 |
maintainer | None |
docs_url | None |
author | Eugene Evstafev |
requires_python | >=3.6 |
license | None |
keywords |
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
[](https://badge.fury.io/py/frame_story)
[](https://opensource.org/licenses/MIT)
[](https://pepy.tech/project/frame_story)
# Frame Story
`FrameStory` is a Python package designed for extracting and describing significant frames from videos. Leveraging state-of-the-art machine learning models, it can provide detailed descriptions of video content, making it a powerful tool for content analysis, accessibility, and summarization.
## Installation
To install `FrameStory`, you can use pip:
```bash
pip install FrameStory
```
## Usage
Using `FrameStory` is straightforward. Below are examples demonstrating how to extract and describe significant frames from videos with various parameters.
### Describing Video by URL
```python
from frame_story.video_describer import VideoDescriber
video_url = "https://example.com/video.mp4"
describer = VideoDescriber(show_progress=True)
descriptions = describer.get_video_descriptions(video_url=video_url)
print(descriptions)
```
### Describing Video from Local Path
```python
video_path = "/path/to/your/video.mp4"
describer = VideoDescriber(show_progress=True, max_tokens=50)
descriptions = describer.get_video_descriptions(video_path=video_path)
print(descriptions)
```
### Customizing Extraction Threshold
The `extract_significant_frames` method allows you to customize the threshold for what constitutes a "significant" change between frames.
```python
video_url = "https://example.com/video.mp4"
describer = VideoDescriber(threshold=25000)
descriptions = describer.get_video_descriptions(video_url=video_url)
print(descriptions)
```
These examples demonstrate the versatility of `frame_story` in processing videos from different sources and with various levels of detail in descriptions.
## Features
- Extraction of significant frames from videos for detailed analysis.
- Generation of descriptive text for each significant frame using state-of-the-art image captioning models.
- Support for videos from URLs or local file paths.
- Customizable settings for progress display, description length, and frame extraction threshold.
- Easy to integrate into Python projects for content analysis, summarization, and accessibility applications.
## Contributing
Contributions, issues, and feature requests are welcome! Feel free to check the [issues page](https://github.com/chigwell/frame_story/issues).
## License
This project is licensed under the [MIT License](https://choosealicense.com/licenses/mit/).
Raw data
{
"_id": null,
"home_page": "https://github.com/chigwell/FrameStory",
"name": "FrameStory",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": null,
"author": "Eugene Evstafev",
"author_email": "chigwel@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/40/41/46d8ad879ff08c7cbbcc1c25cdf02020554e7d9d44585f1567d6d122ca33/FrameStory-0.1.3.tar.gz",
"platform": null,
"description": "[](https://badge.fury.io/py/frame_story)\n[](https://opensource.org/licenses/MIT)\n[](https://pepy.tech/project/frame_story)\n\n# Frame Story\n\n`FrameStory` is a Python package designed for extracting and describing significant frames from videos. Leveraging state-of-the-art machine learning models, it can provide detailed descriptions of video content, making it a powerful tool for content analysis, accessibility, and summarization.\n\n## Installation\n\nTo install `FrameStory`, you can use pip:\n\n```bash\npip install FrameStory\n```\n\n## Usage\n\nUsing `FrameStory` is straightforward. Below are examples demonstrating how to extract and describe significant frames from videos with various parameters.\n\n### Describing Video by URL\n\n```python\nfrom frame_story.video_describer import VideoDescriber\n\nvideo_url = \"https://example.com/video.mp4\"\ndescriber = VideoDescriber(show_progress=True)\ndescriptions = describer.get_video_descriptions(video_url=video_url)\nprint(descriptions)\n```\n\n### Describing Video from Local Path\n\n```python\nvideo_path = \"/path/to/your/video.mp4\"\ndescriber = VideoDescriber(show_progress=True, max_tokens=50)\ndescriptions = describer.get_video_descriptions(video_path=video_path)\nprint(descriptions)\n```\n\n### Customizing Extraction Threshold\n\nThe `extract_significant_frames` method allows you to customize the threshold for what constitutes a \"significant\" change between frames.\n\n```python\nvideo_url = \"https://example.com/video.mp4\"\ndescriber = VideoDescriber(threshold=25000)\ndescriptions = describer.get_video_descriptions(video_url=video_url)\nprint(descriptions)\n```\n\nThese examples demonstrate the versatility of `frame_story` in processing videos from different sources and with various levels of detail in descriptions.\n\n## Features\n\n- Extraction of significant frames from videos for detailed analysis.\n- Generation of descriptive text for each significant frame using state-of-the-art image captioning models.\n- Support for videos from URLs or local file paths.\n- Customizable settings for progress display, description length, and frame extraction threshold.\n- Easy to integrate into Python projects for content analysis, summarization, and accessibility applications.\n\n## Contributing\n\nContributions, issues, and feature requests are welcome! Feel free to check the [issues page](https://github.com/chigwell/frame_story/issues).\n\n## License\n\nThis project is licensed under the [MIT License](https://choosealicense.com/licenses/mit/).\n",
"bugtrack_url": null,
"license": null,
"summary": "A Python package for creating video descriptions by analyzing and extracting significant frames.",
"version": "0.1.3",
"project_urls": {
"Homepage": "https://github.com/chigwell/FrameStory"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "df4c69b511440f22dad7eafdde00b223cb0b91d2c1e57c658279ef60b08a9067",
"md5": "9de8b3302c40d9b2644198cd2c940ba1",
"sha256": "cb4696d8d8d972ec2ba84f36da5f05502f30eabbd3a42d9ca0321a7c97b3672f"
},
"downloads": -1,
"filename": "FrameStory-0.1.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "9de8b3302c40d9b2644198cd2c940ba1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 5762,
"upload_time": "2024-04-07T11:45:22",
"upload_time_iso_8601": "2024-04-07T11:45:22.679421Z",
"url": "https://files.pythonhosted.org/packages/df/4c/69b511440f22dad7eafdde00b223cb0b91d2c1e57c658279ef60b08a9067/FrameStory-0.1.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "404146d8ad879ff08c7cbbcc1c25cdf02020554e7d9d44585f1567d6d122ca33",
"md5": "47893881189985e13539f539aa820a4e",
"sha256": "7ef7bcda0fcdbf52cd5a09af6d3324f172d0dd724935c0b7a8eb643bbb82fb17"
},
"downloads": -1,
"filename": "FrameStory-0.1.3.tar.gz",
"has_sig": false,
"md5_digest": "47893881189985e13539f539aa820a4e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 4961,
"upload_time": "2024-04-07T11:45:25",
"upload_time_iso_8601": "2024-04-07T11:45:25.610258Z",
"url": "https://files.pythonhosted.org/packages/40/41/46d8ad879ff08c7cbbcc1c25cdf02020554e7d9d44585f1567d6d122ca33/FrameStory-0.1.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-07 11:45:25",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "chigwell",
"github_project": "FrameStory",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "framestory"
}