FuzzyPySeg


NameFuzzyPySeg JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/Danyulll/FuzzyPySeg
SummaryFuzzyPySeg is a package for segmenting images using Fuzzy C Means clustering with either a Euclidean or Mahalanobis distance. You may also specify a centroid initialization using the firefly algorithm, genetic algorithm, or the Biogeography-based optimization algorithm.
upload_time2023-05-10 02:21:40
maintainer
docs_urlNone
authorDaniel Krasnov
requires_python
licenseMIT
keywords image segmentation clustering fuzzy c-means firefly algorithm genetic algorithm biogeography-based optimization algorithm
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Danyulll/FuzzyPySeg",
    "name": "FuzzyPySeg",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "image segmentation,clustering,fuzzy c-means,firefly algorithm,genetic algorithm,biogeography-based optimization algorithm",
    "author": "Daniel Krasnov",
    "author_email": "dkrasnov@student.ubc.ca",
    "download_url": "https://files.pythonhosted.org/packages/3c/fe/0f3c3f5e243ddc24a05d7f4203fe6f2b38192917117e04bdf0e428137011/FuzzyPySeg-1.0.1.tar.gz",
    "platform": null,
    "description": "",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "FuzzyPySeg is a package for segmenting images using Fuzzy C Means clustering with either a Euclidean or Mahalanobis distance. You may also specify a centroid initialization using the firefly algorithm, genetic algorithm, or the Biogeography-based optimization algorithm.",
    "version": "1.0.1",
    "project_urls": {
        "Download": "https://github.com/Danyulll/FuzzyPySeg/archive/refs/tags/v1.0.1.tar.gz",
        "Homepage": "https://github.com/Danyulll/FuzzyPySeg"
    },
    "split_keywords": [
        "image segmentation",
        "clustering",
        "fuzzy c-means",
        "firefly algorithm",
        "genetic algorithm",
        "biogeography-based optimization algorithm"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3cfe0f3c3f5e243ddc24a05d7f4203fe6f2b38192917117e04bdf0e428137011",
                "md5": "5a14fbc0d493a2dcfa211898d909b3f2",
                "sha256": "21c85d3c409ec677e99244efa5944ded48fa4afb9622200ee033a25ad1e23784"
            },
            "downloads": -1,
            "filename": "FuzzyPySeg-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "5a14fbc0d493a2dcfa211898d909b3f2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 8391,
            "upload_time": "2023-05-10T02:21:40",
            "upload_time_iso_8601": "2023-05-10T02:21:40.641190Z",
            "url": "https://files.pythonhosted.org/packages/3c/fe/0f3c3f5e243ddc24a05d7f4203fe6f2b38192917117e04bdf0e428137011/FuzzyPySeg-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-10 02:21:40",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Danyulll",
    "github_project": "FuzzyPySeg",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "fuzzypyseg"
}
        
Elapsed time: 0.08502s