# GQNN: A Python Package for Quantum Neural Networks
[](https://github.com/Gokulraj0906/GQNN/actions/workflows/pypi-publish.yml)

[](https://pepy.tech/projects/gqnn)
[](https://pepy.tech/projects/gqnn)
[](https://pepy.tech/projects/gqnn)







GQNN is a pioneering Python library designed for research and experimentation with Quantum Neural Networks (QNNs). By integrating principles of quantum computing with classical neural network architectures, GQNN enables researchers to explore hybrid models that leverage the computational advantages of quantum systems. This library was developed by **GokulRaj S** as part of his research on Customized Quantum Neural Networks.
---
## Table of Contents
1. [Introduction](#introduction)
2. [Features](#features)
3. [Installation](#installation)
4. [Getting Started](#getting-started)
5. [Use Cases](#use-cases)
6. [Documentation](#documentation)
7. [Requirements](#requirements)
8. [Contribution](#contribution)
9. [License](#license)
10. [Acknowledgements](#acknowledgements)
11. [Contact](#contact)
---
## Introduction
Quantum Neural Networks (QNNs) are an emerging field of study combining the principles of quantum mechanics with artificial intelligence. The **GQNN** package offers a platform to implement and study hybrid quantum-classical neural networks, aiming to bridge the gap between theoretical quantum algorithms and practical machine learning applications.
This package allows you to:
- Experiment with QNN architectures.
- Train models on classical or quantum data.
- Explore quantum-enhanced learning algorithms.
- Conduct research in Quantum Machine Learning.
---
## Features
- **Hybrid Neural Networks**: Combines classical and quantum layers seamlessly.
- **Custom Quantum Circuits**: Design and implement your own quantum gates and circuits.
- **Lightweight and Flexible**: Built with Python, NumPy, and scikit-learn for simplicity and extensibility.
- **Scalable**: Easily scale models for larger qubit configurations or datasets.
- **Research-Oriented**: Ideal for academic and experimental use in quantum machine learning.
---
## Installation
### Prerequisites
- Python 3.7 to 3.12 higher or lower version is not supported
- Ensure pip is updated: `pip install --upgrade pip`
### Installing GQNN
#### From PyPI
```bash
pip install GQNN
```
#### From Source
```bash
git clone https://github.com/gokulraj0906/GQNN.git
cd GQNN
pip install .
```
---
## Getting Started
### Basic Example
### Classification model
```python
import matplotlib
matplotlib.use("Agg")
matplotlib.use("TkAgg")
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from GQNN.models.classification_model import (
QuantumClassifier_EstimatorQNN_CPU,
QuantumClassifier_SamplerQNN_CPU,
VariationalQuantumClassifier_CPU
)
# Data prep
X, y = make_classification(
n_samples=200, n_features=2, n_informative=2,
n_redundant=0, n_clusters_per_class=1, random_state=42
)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=42
)
scaler = StandardScaler()
X_train, X_test = scaler.fit_transform(X_train), scaler.transform(X_test)
# Helper to run, evaluate, save, visualize
def run_model(model, name):
print(f"\n🔹 Training {name}...")
model.fit(X_train, y_train, verbose=True)
acc = model.score(X_test, y_test)
print(f"{name} Accuracy: {acc:.4f}")
model.save_model(f"{name.lower()}.pkl")
model.print_model(f"{name.lower()}_circuit.png")
# Run different models
run_model(
QuantumClassifier_EstimatorQNN_CPU(num_qubits=2, batch_size=32, lr=0.001),
"EstimatorQNN"
)
run_model(
QuantumClassifier_SamplerQNN_CPU(num_inputs=2, output_shape=2, ansatz_reps=1, maxiter=50),
"SamplerQNN"
)
run_model(
VariationalQuantumClassifier_CPU(num_inputs=2, maxiter=30),
"VariationalQNN"
)
```
### Regression Example
```python
import matplotlib
matplotlib.use("Agg")
from GQNN.models.regression_model import (
QuantumRegressor_EstimatorQNN_CPU,
QuantumRegressor_VQR_CPU
)
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# Generate regression data
X, y = make_regression(
n_samples=150,
n_features=3,
n_informative=3,
noise=3.0,
random_state=42,
bias=0.0
)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
# Scaling
scaler_X = StandardScaler()
scaler_y = StandardScaler()
X_train_scaled = scaler_X.fit_transform(X_train)
X_test_scaled = scaler_X.transform(X_test)
y_train_scaled = scaler_y.fit_transform(y_train.reshape(-1, 1)).flatten()
y_test_scaled = scaler_y.transform(y_test.reshape(-1, 1)).flatten()
# Helper
def run_regressor(model, name):
print(f"\n🔹 Training {name}...")
model.fit(X_train_scaled, y_train_scaled, verbose=True)
r2_train = model.score(X_train_scaled, y_train_scaled)
r2_test = model.score(X_test_scaled, y_test_scaled)
print(f"{name} R² Train: {r2_train:.4f}, R² Test: {r2_test:.4f}")
model.save_model(f"{name.lower()}.pkl")
model.print_model(f"{name.lower()}_circuit.png")
# Run models
run_regressor(
QuantumRegressor_EstimatorQNN_CPU(num_qubits=3, maxiter=100),
"EstimatorQNN_Regressor"
)
run_regressor(
QuantumRegressor_VQR_CPU(num_qubits=3, maxiter=100),
"VariationalQNN_Regressor"
)
```
### QSVM Example (Classification + Regression)
```python
"""
Comprehensive QSVM Testing: Classification and Regression
"""
from GQNN.models.qsvm import QSVC_CPU, QSVR_CPU
from sklearn.datasets import make_classification, make_regression
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import (
accuracy_score, confusion_matrix, r2_score,
mean_squared_error, mean_absolute_error
)
import numpy as np
def run_qsvc():
X, y = make_classification(
n_samples=80, n_features=2, n_informative=2,
n_redundant=0, random_state=42
)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
scaler = StandardScaler()
X_train_scaled, X_test_scaled = scaler.fit_transform(X_train), scaler.transform(X_test)
model = QSVC_CPU(num_qubits=2, feature_map_reps=2)
model.fit(X_train_scaled, y_train, verbose=True)
y_pred = model.predict(X_test_scaled)
acc = accuracy_score(y_test, y_pred)
cm = confusion_matrix(y_test, y_pred)
print(f"\nQSVC Accuracy: {acc:.4f}")
print("Confusion Matrix:\n", cm)
model.save_model("qsvc_model.pkl")
model.print_model("qsvc_circuit.png")
def run_qsvr():
X, y = make_regression(n_samples=80, n_features=2, noise=10.0, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
scaler = StandardScaler()
X_train_scaled, X_test_scaled = scaler.fit_transform(X_train), scaler.transform(X_test)
model = QSVR_CPU(num_qubits=2, feature_map_reps=2, epsilon=0.1)
model.fit(X_train_scaled, y_train, verbose=True)
y_pred = model.predict(X_test_scaled)
r2 = r2_score(y_test, y_pred)
mse, mae = mean_squared_error(y_test, y_pred), mean_absolute_error(y_test, y_pred)
print(f"\nQSVR R²: {r2:.4f}, MSE: {mse:.4f}, MAE: {mae:.4f}")
model.save_model("qsvr_model.pkl")
model.print_model("qsvr_circuit.png")
if __name__ == "__main__":
run_qsvc()
run_qsvr()
```
### Advanced Usage
For more advanced configurations, such as custom quantum gates or layers, refer to the [Documentation](#documentation).
---
## Use Cases
GQNN can be used for:
1. **Research and Development**: Experiment with quantum-enhanced machine learning algorithms.
2. **Education**: Learn and teach quantum computing principles via QNNs.
3. **Prototyping**: Develop proof-of-concept models for quantum computing applications.
4. **Hybrid Systems**: Integrate classical and quantum systems for real-world data processing.
---
## Documentation
Comprehensive documentation is available to help you get started with GQNN, including tutorials, API references, and implementation guides.
- **Documentation**: [GQNN Documentation](https://www.gokulraj.tech/GQNN/docs)
- **Examples**: [Examples Folder](https://www.gokulraj.tech/GQNN/examples)
---
## Requirements
The following dependencies are required to use GQNN:
- Python >= 3.7
- NumPy
- Pandas
- scikit-learn
- Qiskit
- Qiskit-machine-learning
- Qiskit_ibm_runtime
- matplotlib
- ipython
- pylatexenc
### For Linux Users
```bash
pip install GQNN[linux]
```
Optional:
- Quantum simulation tools (e.g., Qiskit or Cirq) for advanced quantum operations.
Install required dependencies using:
```bash
pip install GQNN
```
---
## Contribution
We welcome contributions to make GQNN better! Here's how you can contribute:
1. **Fork the Repository**: Click the "Fork" button on the GitHub page.
2. **Clone Your Fork**:
```bash
git clone https://github.com/gokulraj0906/GQNN.git
```
3. **Create a New Branch**:
```bash
git checkout -b feature-name
```
4. **Make Your Changes**: Implement your feature or bug fix.
5. **Push Changes**:
```bash
git push origin feature-name
```
6. **Submit a Pull Request**: Open a pull request with a detailed description of your changes.
---
## License
GQNN is licensed under the GPL-3.0 License. See the [LICENSE](LICENSE) file for full details.
---
## Acknowledgements
- This package is a result of research work by **GokulRaj S**.
- Special thanks to the open-source community and the developers of foundational quantum computing tools.
- Inspired by emerging trends in Quantum Machine Learning.
---
## Contact
For queries, feedback, or collaboration opportunities, please reach out:
**Author**: GokulRaj S
**Email**: gokulsenthil0906@gmail.com
**GitHub**: [gokulraj0906](https://github.com/gokulraj0906)
**LinkedIn**: [Gokul Raj](https://www.linkedin.com/in/gokulraj0906)
---
Happy Quantum Computing! 🚀
Raw data
{
"_id": null,
"home_page": "https://github.com/gokulraj0906/GQNN",
"name": "GQNN",
"maintainer": null,
"docs_url": null,
"requires_python": "<=3.13,>=3.7",
"maintainer_email": null,
"keywords": "quantum computing, quantum neural networks, QNN, machine learning, artificial intelligence, quantum machine learning, deep learning, qiskit, quantum algorithms, scientific computing, research, data science, quantum AI, quantum optimization",
"author": "GokulRaj S",
"author_email": "gokulsenthil0906@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/59/10/674ee7a9b7c038043f80bd5d86b50cb49c2f05a401c3d747aa66139ff019/gqnn-1.6.0.tar.gz",
"platform": null,
"description": "# GQNN: A Python Package for Quantum Neural Networks\n[](https://github.com/Gokulraj0906/GQNN/actions/workflows/pypi-publish.yml)\n\n[](https://pepy.tech/projects/gqnn)\n[](https://pepy.tech/projects/gqnn)\n[](https://pepy.tech/projects/gqnn)\n\n\n\n\n\n\n\n\nGQNN is a pioneering Python library designed for research and experimentation with Quantum Neural Networks (QNNs). By integrating principles of quantum computing with classical neural network architectures, GQNN enables researchers to explore hybrid models that leverage the computational advantages of quantum systems. This library was developed by **GokulRaj S** as part of his research on Customized Quantum Neural Networks.\n\n---\n\n## Table of Contents\n\n1. [Introduction](#introduction)\n2. [Features](#features)\n3. [Installation](#installation)\n4. [Getting Started](#getting-started)\n5. [Use Cases](#use-cases)\n6. [Documentation](#documentation)\n7. [Requirements](#requirements)\n8. [Contribution](#contribution)\n9. [License](#license)\n10. [Acknowledgements](#acknowledgements)\n11. [Contact](#contact)\n\n---\n\n## Introduction\n\nQuantum Neural Networks (QNNs) are an emerging field of study combining the principles of quantum mechanics with artificial intelligence. The **GQNN** package offers a platform to implement and study hybrid quantum-classical neural networks, aiming to bridge the gap between theoretical quantum algorithms and practical machine learning applications.\n\nThis package allows you to:\n\n- Experiment with QNN architectures.\n- Train models on classical or quantum data.\n- Explore quantum-enhanced learning algorithms.\n- Conduct research in Quantum Machine Learning.\n\n---\n\n## Features\n\n- **Hybrid Neural Networks**: Combines classical and quantum layers seamlessly.\n- **Custom Quantum Circuits**: Design and implement your own quantum gates and circuits.\n- **Lightweight and Flexible**: Built with Python, NumPy, and scikit-learn for simplicity and extensibility.\n- **Scalable**: Easily scale models for larger qubit configurations or datasets.\n- **Research-Oriented**: Ideal for academic and experimental use in quantum machine learning.\n\n---\n\n## Installation\n\n### Prerequisites\n- Python 3.7 to 3.12 higher or lower version is not supported\n- Ensure pip is updated: `pip install --upgrade pip`\n\n### Installing GQNN\n#### From PyPI\n```bash\npip install GQNN\n```\n\n#### From Source\n```bash\ngit clone https://github.com/gokulraj0906/GQNN.git\ncd GQNN\npip install .\n```\n\n---\n\n## Getting Started\n\n### Basic Example\n\n### Classification model\n\n```python\nimport matplotlib\nmatplotlib.use(\"Agg\")\nmatplotlib.use(\"TkAgg\")\n\nfrom sklearn.datasets import make_classification\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.preprocessing import StandardScaler\n\nfrom GQNN.models.classification_model import (\n QuantumClassifier_EstimatorQNN_CPU,\n QuantumClassifier_SamplerQNN_CPU,\n VariationalQuantumClassifier_CPU\n)\n\n# Data prep\nX, y = make_classification(\n n_samples=200, n_features=2, n_informative=2,\n n_redundant=0, n_clusters_per_class=1, random_state=42\n)\nX_train, X_test, y_train, y_test = train_test_split(\n X, y, test_size=0.3, random_state=42\n)\nscaler = StandardScaler()\nX_train, X_test = scaler.fit_transform(X_train), scaler.transform(X_test)\n\n# Helper to run, evaluate, save, visualize\ndef run_model(model, name):\n print(f\"\\n\ud83d\udd39 Training {name}...\")\n model.fit(X_train, y_train, verbose=True)\n acc = model.score(X_test, y_test)\n print(f\"{name} Accuracy: {acc:.4f}\")\n model.save_model(f\"{name.lower()}.pkl\")\n model.print_model(f\"{name.lower()}_circuit.png\")\n\n# Run different models\nrun_model(\n QuantumClassifier_EstimatorQNN_CPU(num_qubits=2, batch_size=32, lr=0.001),\n \"EstimatorQNN\"\n)\n\nrun_model(\n QuantumClassifier_SamplerQNN_CPU(num_inputs=2, output_shape=2, ansatz_reps=1, maxiter=50),\n \"SamplerQNN\"\n)\n\nrun_model(\n VariationalQuantumClassifier_CPU(num_inputs=2, maxiter=30),\n \"VariationalQNN\"\n)\n```\n\n### Regression Example\n\n ```python\nimport matplotlib\nmatplotlib.use(\"Agg\")\n\nfrom GQNN.models.regression_model import (\n QuantumRegressor_EstimatorQNN_CPU,\n QuantumRegressor_VQR_CPU\n)\nfrom sklearn.datasets import make_regression\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.preprocessing import StandardScaler\n\n# Generate regression data\nX, y = make_regression(\n n_samples=150,\n n_features=3,\n n_informative=3,\n noise=3.0,\n random_state=42,\n bias=0.0\n)\n\nX_train, X_test, y_train, y_test = train_test_split(\n X, y, test_size=0.2, random_state=42\n)\n\n# Scaling\nscaler_X = StandardScaler()\nscaler_y = StandardScaler()\nX_train_scaled = scaler_X.fit_transform(X_train)\nX_test_scaled = scaler_X.transform(X_test)\ny_train_scaled = scaler_y.fit_transform(y_train.reshape(-1, 1)).flatten()\ny_test_scaled = scaler_y.transform(y_test.reshape(-1, 1)).flatten()\n\n# Helper\ndef run_regressor(model, name):\n print(f\"\\n\ud83d\udd39 Training {name}...\")\n model.fit(X_train_scaled, y_train_scaled, verbose=True)\n r2_train = model.score(X_train_scaled, y_train_scaled)\n r2_test = model.score(X_test_scaled, y_test_scaled)\n print(f\"{name} R\u00b2 Train: {r2_train:.4f}, R\u00b2 Test: {r2_test:.4f}\")\n model.save_model(f\"{name.lower()}.pkl\")\n model.print_model(f\"{name.lower()}_circuit.png\")\n\n# Run models\nrun_regressor(\n QuantumRegressor_EstimatorQNN_CPU(num_qubits=3, maxiter=100),\n \"EstimatorQNN_Regressor\"\n)\n\nrun_regressor(\n QuantumRegressor_VQR_CPU(num_qubits=3, maxiter=100),\n \"VariationalQNN_Regressor\"\n)\n ```\n\n ### QSVM Example (Classification + Regression)\n\n ```python\n\"\"\"\nComprehensive QSVM Testing: Classification and Regression\n\"\"\"\n\nfrom GQNN.models.qsvm import QSVC_CPU, QSVR_CPU\nfrom sklearn.datasets import make_classification, make_regression\nfrom sklearn.preprocessing import StandardScaler\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.metrics import (\n accuracy_score, confusion_matrix, r2_score,\n mean_squared_error, mean_absolute_error\n)\nimport numpy as np\n\ndef run_qsvc():\n X, y = make_classification(\n n_samples=80, n_features=2, n_informative=2,\n n_redundant=0, random_state=42\n )\n X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)\n scaler = StandardScaler()\n X_train_scaled, X_test_scaled = scaler.fit_transform(X_train), scaler.transform(X_test)\n\n model = QSVC_CPU(num_qubits=2, feature_map_reps=2)\n model.fit(X_train_scaled, y_train, verbose=True)\n y_pred = model.predict(X_test_scaled)\n\n acc = accuracy_score(y_test, y_pred)\n cm = confusion_matrix(y_test, y_pred)\n print(f\"\\nQSVC Accuracy: {acc:.4f}\")\n print(\"Confusion Matrix:\\n\", cm)\n model.save_model(\"qsvc_model.pkl\")\n model.print_model(\"qsvc_circuit.png\")\n\ndef run_qsvr():\n X, y = make_regression(n_samples=80, n_features=2, noise=10.0, random_state=42)\n X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)\n scaler = StandardScaler()\n X_train_scaled, X_test_scaled = scaler.fit_transform(X_train), scaler.transform(X_test)\n\n model = QSVR_CPU(num_qubits=2, feature_map_reps=2, epsilon=0.1)\n model.fit(X_train_scaled, y_train, verbose=True)\n y_pred = model.predict(X_test_scaled)\n\n r2 = r2_score(y_test, y_pred)\n mse, mae = mean_squared_error(y_test, y_pred), mean_absolute_error(y_test, y_pred)\n print(f\"\\nQSVR R\u00b2: {r2:.4f}, MSE: {mse:.4f}, MAE: {mae:.4f}\")\n model.save_model(\"qsvr_model.pkl\")\n model.print_model(\"qsvr_circuit.png\")\n\nif __name__ == \"__main__\":\n run_qsvc()\n run_qsvr()\n ```\n\n### Advanced Usage\nFor more advanced configurations, such as custom quantum gates or layers, refer to the [Documentation](#documentation).\n\n---\n\n## Use Cases\n\nGQNN can be used for:\n1. **Research and Development**: Experiment with quantum-enhanced machine learning algorithms.\n2. **Education**: Learn and teach quantum computing principles via QNNs.\n3. **Prototyping**: Develop proof-of-concept models for quantum computing applications.\n4. **Hybrid Systems**: Integrate classical and quantum systems for real-world data processing.\n\n---\n\n## Documentation\n\nComprehensive documentation is available to help you get started with GQNN, including tutorials, API references, and implementation guides.\n\n- **Documentation**: [GQNN Documentation](https://www.gokulraj.tech/GQNN/docs)\n- **Examples**: [Examples Folder](https://www.gokulraj.tech/GQNN/examples)\n\n---\n\n## Requirements\n\nThe following dependencies are required to use GQNN:\n\n- Python >= 3.7\n- NumPy\n- Pandas\n- scikit-learn\n- Qiskit\n- Qiskit-machine-learning\n- Qiskit_ibm_runtime\n- matplotlib\n- ipython\n- pylatexenc\n\n### For Linux Users\n```bash\npip install GQNN[linux]\n```\n\nOptional:\n- Quantum simulation tools (e.g., Qiskit or Cirq) for advanced quantum operations.\n\nInstall required dependencies using:\n```bash\npip install GQNN\n```\n\n---\n\n## Contribution\n\nWe welcome contributions to make GQNN better! Here's how you can contribute:\n\n1. **Fork the Repository**: Click the \"Fork\" button on the GitHub page.\n2. **Clone Your Fork**:\n ```bash\n git clone https://github.com/gokulraj0906/GQNN.git\n ```\n3. **Create a New Branch**:\n ```bash\n git checkout -b feature-name\n ```\n4. **Make Your Changes**: Implement your feature or bug fix.\n5. **Push Changes**:\n ```bash\n git push origin feature-name\n ```\n6. **Submit a Pull Request**: Open a pull request with a detailed description of your changes.\n\n---\n\n## License\n\nGQNN is licensed under the GPL-3.0 License. See the [LICENSE](LICENSE) file for full details.\n\n---\n\n## Acknowledgements\n\n- This package is a result of research work by **GokulRaj S**.\n- Special thanks to the open-source community and the developers of foundational quantum computing tools.\n- Inspired by emerging trends in Quantum Machine Learning.\n\n---\n\n## Contact\n\nFor queries, feedback, or collaboration opportunities, please reach out:\n\n**Author**: GokulRaj S \n**Email**: gokulsenthil0906@gmail.com \n**GitHub**: [gokulraj0906](https://github.com/gokulraj0906) \n**LinkedIn**: [Gokul Raj](https://www.linkedin.com/in/gokulraj0906)\n\n---\n\nHappy Quantum Computing! \ud83d\ude80\n",
"bugtrack_url": null,
"license": "GPL-3.0 license",
"summary": "QNN is a Python package for Quantum Neural Networks, a hybrid model combining Quantum Computing and Neural Networks. It was developed by GokulRaj S for research on Customized Quantum Neural Networks.",
"version": "1.6.0",
"project_urls": {
"Documentation": "https://www.GQNN.gokulraj.tech/docs",
"Homepage": "https://github.com/gokulraj0906/GQNN",
"Source": "https://www.GQNN.gokulraj.tech/"
},
"split_keywords": [
"quantum computing",
" quantum neural networks",
" qnn",
" machine learning",
" artificial intelligence",
" quantum machine learning",
" deep learning",
" qiskit",
" quantum algorithms",
" scientific computing",
" research",
" data science",
" quantum ai",
" quantum optimization"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "e3a3e809e90a69a5511d47b1c1db43e4ebcd1b309fb1338da6f85eefd1d7d8e8",
"md5": "2075a1ba71f3a46d5d64ebe8d6333a17",
"sha256": "3ada974939aada022da08c2e92a89d14771b499af2ea1d5f42b289829aa69707"
},
"downloads": -1,
"filename": "gqnn-1.6.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2075a1ba71f3a46d5d64ebe8d6333a17",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<=3.13,>=3.7",
"size": 49721,
"upload_time": "2025-10-13T18:22:25",
"upload_time_iso_8601": "2025-10-13T18:22:25.511649Z",
"url": "https://files.pythonhosted.org/packages/e3/a3/e809e90a69a5511d47b1c1db43e4ebcd1b309fb1338da6f85eefd1d7d8e8/gqnn-1.6.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5910674ee7a9b7c038043f80bd5d86b50cb49c2f05a401c3d747aa66139ff019",
"md5": "0c316445e40dd119f17231e337e8d484",
"sha256": "8fabf7e67ef815d7f19f77ad556bb69fbbd8b340f90c81a9e0614f9003e517e3"
},
"downloads": -1,
"filename": "gqnn-1.6.0.tar.gz",
"has_sig": false,
"md5_digest": "0c316445e40dd119f17231e337e8d484",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<=3.13,>=3.7",
"size": 48427,
"upload_time": "2025-10-13T18:22:26",
"upload_time_iso_8601": "2025-10-13T18:22:26.744825Z",
"url": "https://files.pythonhosted.org/packages/59/10/674ee7a9b7c038043f80bd5d86b50cb49c2f05a401c3d747aa66139ff019/gqnn-1.6.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-13 18:22:26",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "gokulraj0906",
"github_project": "GQNN",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "gqnn"
}