GXKent


NameGXKent JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttp://pypi.python.org/pypi/GXKent/
SummaryAn awesome package for GXKent.
upload_time2024-02-22 20:09:07
maintainer
docs_urlNone
authorFred Trotter
requires_python
licenseLICENSE.txt
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # GXKent
A simple library that allows Great Expectations to run easily in python notebook and CLI environments

## Idea
Kent was the city featured in the Charles Dickens classic, and is therefore the sensible name for a container of expectations
The central issue that Kent resolves is to ensure that pandas dataframes are available and populated with data
in both of our data contexts: CLI and Notebooks

## Usage
Kent = GXKent()
Kent.is_print_on_success = False

  sql_text =
SELECT count(DISTINCT a.npi) AS new_npi_cnt
FROM default_npi_setting_count.{table_name} a
WHERE a.npi NOT IN (
    SELECT DISTINCT b.npi
    FROM default_npi_setting_count.persetting_2021_12 b
    );

gxDF = Kent.gx_df_from_sql(sql_text)

Kent.capture_expectation(
    expectation_name='Between year comparision {this_year} {that_year}',
    expectation_result=gxDF.expect_column_max_to_be_between('new_npi_cnt',112671,253511)
)

Kent.capture_expectation(
    expectation_name='Between year comparision {this_year} {that_year}',
    expectation_result=gxDF.expect_column_min_to_be_between('new_npi_cnt',11671,23511)
)

Kent.capture_expectation(
    expectation_name='Between year comparision {this_year} {that_year}',
    expectation_result=gxDF.expect_column_avg_to_be_between('new_npi_cnt',50000,60000)
)


## Authors
Fred Trotter and Jose Cortina

            

Raw data

            {
    "_id": null,
    "home_page": "http://pypi.python.org/pypi/GXKent/",
    "name": "GXKent",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Fred Trotter",
    "author_email": "fred.trotter@careset.com",
    "download_url": "https://files.pythonhosted.org/packages/c4/3d/3f0e161ba7d86303ba675214a4bd68911b2b71ea81b1f12af2b8dddf2254/GXKent-0.1.0.tar.gz",
    "platform": null,
    "description": "# GXKent\nA simple library that allows Great Expectations to run easily in python notebook and CLI environments\n\n## Idea\nKent was the city featured in the Charles Dickens classic, and is therefore the sensible name for a container of expectations\nThe central issue that Kent resolves is to ensure that pandas dataframes are available and populated with data\nin both of our data contexts: CLI and Notebooks\n\n## Usage\nKent = GXKent()\nKent.is_print_on_success = False\n\n  sql_text =\nSELECT count(DISTINCT a.npi) AS new_npi_cnt\nFROM default_npi_setting_count.{table_name} a\nWHERE a.npi NOT IN (\n    SELECT DISTINCT b.npi\n    FROM default_npi_setting_count.persetting_2021_12 b\n    );\n\ngxDF = Kent.gx_df_from_sql(sql_text)\n\nKent.capture_expectation(\n    expectation_name='Between year comparision {this_year} {that_year}',\n    expectation_result=gxDF.expect_column_max_to_be_between('new_npi_cnt',112671,253511)\n)\n\nKent.capture_expectation(\n    expectation_name='Between year comparision {this_year} {that_year}',\n    expectation_result=gxDF.expect_column_min_to_be_between('new_npi_cnt',11671,23511)\n)\n\nKent.capture_expectation(\n    expectation_name='Between year comparision {this_year} {that_year}',\n    expectation_result=gxDF.expect_column_avg_to_be_between('new_npi_cnt',50000,60000)\n)\n\n\n## Authors\nFred Trotter and Jose Cortina\n",
    "bugtrack_url": null,
    "license": "LICENSE.txt",
    "summary": "An awesome package for GXKent.",
    "version": "0.1.0",
    "project_urls": {
        "Homepage": "http://pypi.python.org/pypi/GXKent/"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c73c73744eaf9e31ec590cfcaefc76ab4e9d16494e245d91ede8fe5471986a35",
                "md5": "071404b530fea4ed2264c1082e136ea3",
                "sha256": "4bcd34c2af8a06dae8ea6af907dbf3cbbae591074492c771cb13cfbeaab00663"
            },
            "downloads": -1,
            "filename": "GXKent-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "071404b530fea4ed2264c1082e136ea3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 5783,
            "upload_time": "2024-02-22T20:09:04",
            "upload_time_iso_8601": "2024-02-22T20:09:04.227531Z",
            "url": "https://files.pythonhosted.org/packages/c7/3c/73744eaf9e31ec590cfcaefc76ab4e9d16494e245d91ede8fe5471986a35/GXKent-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c43d3f0e161ba7d86303ba675214a4bd68911b2b71ea81b1f12af2b8dddf2254",
                "md5": "704e3967fd9cdfe0cf17275cb87b69a6",
                "sha256": "bee165a9b5a4b7b29ac8f4529ae378cd30be4677129cc7ae87132b43fc765bc4"
            },
            "downloads": -1,
            "filename": "GXKent-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "704e3967fd9cdfe0cf17275cb87b69a6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 5735,
            "upload_time": "2024-02-22T20:09:07",
            "upload_time_iso_8601": "2024-02-22T20:09:07.283288Z",
            "url": "https://files.pythonhosted.org/packages/c4/3d/3f0e161ba7d86303ba675214a4bd68911b2b71ea81b1f12af2b8dddf2254/GXKent-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-22 20:09:07",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "gxkent"
}
        
Elapsed time: 4.46728s