# GXKent
A simple library that allows Great Expectations to run easily in python notebook and CLI environments
## Idea
Kent was the city featured in the Charles Dickens classic, and is therefore the sensible name for a container of expectations
The central issue that Kent resolves is to ensure that pandas dataframes are available and populated with data
in both of our data contexts: CLI and Notebooks
## Usage
Kent = GXKent()
Kent.is_print_on_success = False
sql_text =
SELECT count(DISTINCT a.npi) AS new_npi_cnt
FROM default_npi_setting_count.{table_name} a
WHERE a.npi NOT IN (
SELECT DISTINCT b.npi
FROM default_npi_setting_count.persetting_2021_12 b
);
gxDF = Kent.gx_df_from_sql(sql_text)
Kent.capture_expectation(
expectation_name='Between year comparision {this_year} {that_year}',
expectation_result=gxDF.expect_column_max_to_be_between('new_npi_cnt',112671,253511)
)
Kent.capture_expectation(
expectation_name='Between year comparision {this_year} {that_year}',
expectation_result=gxDF.expect_column_min_to_be_between('new_npi_cnt',11671,23511)
)
Kent.capture_expectation(
expectation_name='Between year comparision {this_year} {that_year}',
expectation_result=gxDF.expect_column_avg_to_be_between('new_npi_cnt',50000,60000)
)
## Authors
Fred Trotter and Jose Cortina
Raw data
{
"_id": null,
"home_page": "http://pypi.python.org/pypi/GXKent/",
"name": "GXKent",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "Fred Trotter",
"author_email": "fred.trotter@careset.com",
"download_url": "https://files.pythonhosted.org/packages/c4/3d/3f0e161ba7d86303ba675214a4bd68911b2b71ea81b1f12af2b8dddf2254/GXKent-0.1.0.tar.gz",
"platform": null,
"description": "# GXKent\nA simple library that allows Great Expectations to run easily in python notebook and CLI environments\n\n## Idea\nKent was the city featured in the Charles Dickens classic, and is therefore the sensible name for a container of expectations\nThe central issue that Kent resolves is to ensure that pandas dataframes are available and populated with data\nin both of our data contexts: CLI and Notebooks\n\n## Usage\nKent = GXKent()\nKent.is_print_on_success = False\n\n sql_text =\nSELECT count(DISTINCT a.npi) AS new_npi_cnt\nFROM default_npi_setting_count.{table_name} a\nWHERE a.npi NOT IN (\n SELECT DISTINCT b.npi\n FROM default_npi_setting_count.persetting_2021_12 b\n );\n\ngxDF = Kent.gx_df_from_sql(sql_text)\n\nKent.capture_expectation(\n expectation_name='Between year comparision {this_year} {that_year}',\n expectation_result=gxDF.expect_column_max_to_be_between('new_npi_cnt',112671,253511)\n)\n\nKent.capture_expectation(\n expectation_name='Between year comparision {this_year} {that_year}',\n expectation_result=gxDF.expect_column_min_to_be_between('new_npi_cnt',11671,23511)\n)\n\nKent.capture_expectation(\n expectation_name='Between year comparision {this_year} {that_year}',\n expectation_result=gxDF.expect_column_avg_to_be_between('new_npi_cnt',50000,60000)\n)\n\n\n## Authors\nFred Trotter and Jose Cortina\n",
"bugtrack_url": null,
"license": "LICENSE.txt",
"summary": "An awesome package for GXKent.",
"version": "0.1.0",
"project_urls": {
"Homepage": "http://pypi.python.org/pypi/GXKent/"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c73c73744eaf9e31ec590cfcaefc76ab4e9d16494e245d91ede8fe5471986a35",
"md5": "071404b530fea4ed2264c1082e136ea3",
"sha256": "4bcd34c2af8a06dae8ea6af907dbf3cbbae591074492c771cb13cfbeaab00663"
},
"downloads": -1,
"filename": "GXKent-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "071404b530fea4ed2264c1082e136ea3",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 5783,
"upload_time": "2024-02-22T20:09:04",
"upload_time_iso_8601": "2024-02-22T20:09:04.227531Z",
"url": "https://files.pythonhosted.org/packages/c7/3c/73744eaf9e31ec590cfcaefc76ab4e9d16494e245d91ede8fe5471986a35/GXKent-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c43d3f0e161ba7d86303ba675214a4bd68911b2b71ea81b1f12af2b8dddf2254",
"md5": "704e3967fd9cdfe0cf17275cb87b69a6",
"sha256": "bee165a9b5a4b7b29ac8f4529ae378cd30be4677129cc7ae87132b43fc765bc4"
},
"downloads": -1,
"filename": "GXKent-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "704e3967fd9cdfe0cf17275cb87b69a6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 5735,
"upload_time": "2024-02-22T20:09:07",
"upload_time_iso_8601": "2024-02-22T20:09:07.283288Z",
"url": "https://files.pythonhosted.org/packages/c4/3d/3f0e161ba7d86303ba675214a4bd68911b2b71ea81b1f12af2b8dddf2254/GXKent-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-22 20:09:07",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "gxkent"
}