GenJAX


NameGenJAX JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/probcomp/genjax
SummaryProbabilistic programming with Gen, built on top of JAX.
upload_time2024-01-12 22:56:31
maintainerMcCoy R. Becker
docs_urlNone
authorMcCoy R. Becker
requires_python>=3.9,<3.13
licenseApache 2.0
keywords artificial-intelligence probabilistic-programming bayesian-inference differentiable-programming
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <br>
<p align="center">
<img width="400px" src="./docs/assets/img/logo.png"/>
</p>
<br>

<div align="center">
<b><i>Probabilistic programming with Gen, built on top of JAX.</i></b>
</div>
<br>

<div align="center">

[![][jax_badge]](https://github.com/google/jax)
[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
[![Public API: beartyped](https://raw.githubusercontent.com/beartype/beartype-assets/main/badge/bear-ified.svg?style=flat-square)](https://beartype.readthedocs.io)

| **Documentation** |          **Build status**          |
| :---------------: | :--------------------------------: |
| [![](https://img.shields.io/badge/docs-stable-blue.svg?style=flat-square)](https://probcomp.github.io/genjax/) [![](https://img.shields.io/badge/jupyter-%23FA0F00.svg?style=flat-square&logo=jupyter&logoColor=white)](https://probcomp.github.io/genjax/notebooks/) | [![][main_build_action_badge]][main_build_status_url] [![][nightly_build_action_badge]][nightly_build_status_url] |

</div>

[main_build_action_badge]: https://github.com/probcomp/genjax/actions/workflows/ci.yml/badge.svg?style=flat-square&branch=main
[nightly_build_action_badge]: https://github.com/probcomp/genjax/actions/workflows/ci.yml/badge.svg?style=flat-square&branch=nightly
[actions]: https://github.com/probcomp/genjax/actions
[main_build_status_url]: https://github.com/probcomp/genjax/actions/workflows/ci.yml?query=branch%3Amain
[nightly_build_status_url]: https://github.com/probcomp/genjax/actions/workflows/ci.yml?query=branch%3Anightly


<div align="center">
<b>(Early stage)</b> 🔪 expect sharp edges 🔪
</div>

## 🔎 What is GenJAX?

Gen is a multi-paradigm (generative, differentiable, incremental) language for probabilistic programming focused on [**generative functions**: computational objects which represent probability measures over structured sample spaces](https://probcomp.github.io/genjax/notebooks/concepts/introduction/intro_to_genjax.html#what-is-a-generative-function).

GenJAX is an implementation of Gen on top of [JAX](https://github.com/google/jax) - exposing the ability to programmatically construct and manipulate generative functions, as well as [JIT compile + auto-batch inference computations using generative functions onto GPU devices](https://jax.readthedocs.io/en/latest/jax-101/02-jitting.html).

<div align="center">
<a href="https://probcomp.github.io/genjax/notebooks/index.html">Jump into the notebooks!</a>
<br>
<br>
</div>

> GenJAX is part of a larger ecosystem of probabilistic programming tools based upon Gen. [Explore more...](https://www.gen.dev/)

## Quickstart

Install GenJAX via [PyPI](https://pypi.org/project/genjax/):

```sh
pip install genjax
```

Then install [JAX](https://github.com/google/jax) using [this
guide](https://jax.readthedocs.io/en/latest/installation.html) to choose the
command for the architecture you're targeting. To run GenJAX without GPU
support:

```sh
pip install jax[cpu]==0.4.20
```

On a Linux machine with a GPU, run either of the following commands, depending
on which CUDA version (11 or 12) you have installed:

```sh
pip install jax[cuda11_pip]==0.4.20
pip install jax[cuda12_pip]==0.4.20
```

The following code snippet defines a generative function called `beta_bernoulli` that

- takes a shape parameter `beta`
- uses this to create and draw a value `p` from a [Beta
  distribution](https://en.wikipedia.org/wiki/Beta_distribution)
- Flips a coin that returns 1 with probability `p`, 0 with probability `1-p` and
  returns that value

JIT-compiles the function with JAX and then runs it with GenJAX:

```python
import genjax
import jax

@genjax.static
def beta_bernoulli(beta):
    p = genjax.beta(0.0, beta) @ "p"
    v = genjax.bernoulli(p) @ "v"
    return v

key = jax.random.PRNGKey(314159)
trace = jax.jit(beta_bernoulli.simulate)(key, (0.5, ))
choices = trace.get_choices()
```

`choices` is a record of all random choices made during the execution of the
generative function `beta_bernoulli`. Print it with a `genjax.console()`
instance:

```python
console = genjax.console()
console.print(choices)
```

resulting in:

```
(HierarchicalChoiceMap)
├── :p
│   └── (ValueChoice)
│       └──  f32[]
└── :v
    └── (ValueChoice)
        └──  i32[]
```

## References

Many bits of knowledge have gone into this project -- [you can find many of these bits at the MIT Probabilistic Computing Project page](http://probcomp.csail.mit.edu/) under publications. Here's an abbreviated list of high value references:

- [Marco Cusumano-Towner's thesis on Gen][marco_thesis]
- [The main Gen.jl repository][gen_jl]
- (Trace types) [(Lew et al) trace types][trace_types]
- (RAVI) [(Lew et al) Recursive auxiliary-variable inference][ravi]
- (GenSP) [Alex Lew's Gen.jl implementation of GenSP][gen_sp]
- (ADEV) [(Lew & Huot, et al) Automatic differentiation of expected values of probabilistic programs][adev]

### JAX influences

This project has several JAX-based influences. Here's an abbreviated list:

- [This notebook on static dispatch (Dan Piponi)][effect_handling_interp]
- [Equinox (Patrick Kidger's work on neural networks via callable Pytrees)][equinox]
- [Oryx (interpreters and interpreter design)][oryx]

### Acknowledgements

The maintainers of this library would like to acknowledge the JAX and Oryx maintainers for useful discussions and reference code for interpreter-based transformation patterns.

---

<div align="center">
Created and maintained by the <a href="http://probcomp.csail.mit.edu/">MIT Probabilistic Computing Project</a>. All code is licensed under the <a href="LICENSE">Apache 2.0 License</a>.
</div>

[marco_thesis]: https://www.mct.dev/assets/mct-thesis.pdf
[gen_jl]: https://github.com/probcomp/Gen.jl
[trace_types]: https://dl.acm.org/doi/10.1145/3371087
[adev]: https://arxiv.org/abs/2212.06386
[ravi]: https://arxiv.org/abs/2203.02836
[gen_sp]: https://github.com/probcomp/GenSP.jl
[effect_handling_interp]: https://colab.research.google.com/drive/1HGs59anVC2AOsmt7C4v8yD6v8gZSJGm6#scrollTo=ukjVJ2Ls_6Q3
[equinox]: https://github.com/patrick-kidger/equinox
[oryx]: https://github.com/jax-ml/oryx
[jax_badge]: https://img.shields.io/badge/JAX-Accelerated-9cf.svg?style=flat-square&logo=%2B7u3les7u7F3ZIQ3N2tbng8aXFC0uAuKf2hmlJ3AapIgobMv7t0w%2Ba50JzzJdlhlvNldubeq%2FY%2BXrTS1z%2B6sttrKfQOOY4ns13ecFImb47pVvIkukNe4y3Junr1kSZ%2Bb3Na248tx7rKiHlPo6Ryse%2F11NKQuk%2FV3tfL52yHtXm8TGYS1wk4J093wrPQPngRJH9HH1x2fAjMhcIeIaXKQCmd2Gn7IqSvG83BueT0CMkTyESUqm3vRRggTdOBIb1HFDaNl8Gdg91AFGkO7QXe8gJInpoDjEXC9gbhtWH3rjZ%2F9yK6t42Y9zyiC1iLhZA8JQe4eqKXklrJF0MqfPv2bc2wzPZjpnEyMEVlEZCKQzYCJhE8QEtIL1RaXEVFEGmEaTn96VuLDzWflLFbgvqUec3BPVBmeBnNwUiakq1I31UcPaTSR8%2B1LnditsscaB2A48K6D9SoZDD2O6bELvA0JGhl4zIYZzcWtD%2BMfdvdHNsDOHciXwBPN18lj7sy79qQCTNK3nxBZXakqbZFO2jHskA7zBs%2BJhmDmr0RhoadIZjYxKIVHpCZngPMZUKoQKrfEoz1PfZZdKAe2CvP4XnYE8k2LLMdMumwrLaNlomyVqK0UdwN%2BD7AAz73dYBpPg6gPiCN8TXFHCI2s7AWYesJgTabD%2FS5uXDTuwVaAvvghncTdk1DYGkL0daAs%2BsLiutLrn0%2BRMNXpunC7mgkCpshfbw4OhrUvMkYo%2F0c4XtHS1waY4mlG6To8oG1TKjs78xV5fAkSgqcZSL0GoszfxEAW0fUludRNWlIhGsljzVjctr8rJOkCpskKaDYIlgkVoCmF0kp%2FbW%2FU%2F%2B8QNdXPztbAc4kFxIEmNGwKuI9y5gnBMH%2BakiZxlfGaLP48kyj4qPFkeIPh0Q6lt861zZF%2BgBpDcAxT3gEOjGxMDLQRSn9XaDzPWdOstkEN7uez6jmgLOYilR7NkFwLh%2B4G0SQMnMwRp8jaCrwEs8eEmFW2VsNd07HQdP4TgWxNTYcFcKHPhRYFOWLfJJBE5FefTQsWiKRaOw6FBr6ob1RP3EoqdbHsWFDwAYvaVI28DaK8AHs51tU%2BA3Z8CUXvZ1jnSR7SRS2SnwKw4O8B1rCjwrjgt1gSrjXnWhBxjD0Hidm4vfj3e3riUP5PcUCYlZxsYFDK41XnLlUANwVeeILFde%2BGKLhk3zgyZNeQjcSHPMEKSyPPQKfIcKfIqCf8yN95MGZZ1bj98WJ%2BOorQzxsPqcYdX9orw8420jBQNfJVVmTOStEUqFz5dq%2F2tHUY3LbjMh0qYxCwCGxRep8%2FK4ZnldzuUkjJLPDhkzrUFBoHYBjk3odtNMYoJVGx9BG2JTNVehksmRaGUwMbYQITk3Xw9gOxbNoGaA8RWjwuQdsXdGvpdty7Su2%2Fqn0qbzWsXYp0nqVpet0O6zzugva1MZHUdwHk9G8aH7raHua9AIxzzjxDaw4w4cpvEQlM84kwdI0hkpsPpcOtUeaVM8hQT2Qtb4ckUbaYw4fXzGAqSVEd8CGpqamj%2F9Q2pPX7miW0NlHlDE81AxLSI2wyK6xf6vfrcgEwb0PAtPaHM1%2BNXzGXAlMRcUIrMpiE6%2Bxv0cyxSrC6FmjzvkWJE3OxpY%2BzmpsANFBxK6RuIJvXe7bUHNd4zfCwvPPh9unSO%2BbIL2JY53QDqvdbsEi2%2BuwEEHPsfFRdOqjHcjTaCLmWdBewtKzHEwKZynSGgtTaSqx7dwMeBLRhR1LETDhu76vgTFfMLi8zc8F7hoRPpAYjAWCp0Jy5dzfSEfltGU6M9oVCIATnPoGKImDUJNfK0JS37QTc9yY7eDKzIX5wR4wN8RTya4jETAvZDCmFeEPwhNXoOlQt5JnRzqhxLZBpY%2BT5mZD3M4MfLnDW6U%2Fy6jkaDXtysDm8vjxY%2FXYnLebkelXaQtSSge2IhBj9kjMLF41duDUNRiDLHEzfaigsoxRzWG6B0kZ2%2BoRA3dD2lRa44ZrM%2FBW5ANziVApGLaKCYucXOCEdhoew5Y%2Btu65VwJqxUC1j4lav6UwpIJfnRswQUIMawPSr2LGp6WwLDYJ2TwoMNbf6Tdni%2FEuNvAdEvuUZAwFERLVXg7pg9xt1djZgqV7DmuHFGQI9Sje2A9dR%2FFDd0osztIRYnln1hdW1dff%2B1gtNLN1u0ViZy9BBlu%2BzBNUK%2BrIaP9Nla2TG%2BETHwq2kXzmS4XxXmSVan9KMYUprrbgFJqCndyIw9fgdh8dMvzIiW0sngbxoGlniN6LffruTEIGE9khBw5T2FDmWlTYqrnEPa7aF%2FYYcPYiUE48Ul5jhP82tj%2FiESyJilCeLdQRpod6No3xJNNHeZBpOBsiAzm5rg2dBZYSyH9Hob0EOFqqh3vWOuHbFR5eXcORp4OzwTUA4rUzVfJ4q%2FIa1GzCrzjOMxQr5uqLAWUOwgaHOphrgF0r2epYh%2FytdjBmUAurfM6CxruT3Ee%2BDv2%2FHAwK4RUIPskqK%2Fw4%2FR1F1bWfHjbNiXcYl6RwGJcMOMdXZaEVxCutSN1SGLMx3JfzCdlU8THZFFC%2BJJuB2964wSGdmq3I2FEcpWYVfHm4jmXd%2BRn7agFn9oFaWGYhBmJs5v5a0LZUjc3Sr4Ep%2FmFYlX8OdLlFYidM%2B731v7Ly4lfu85l3SSMTAcd5Bg2Sl%2FIHBm3RuacVx%2BrHpFcWjxztavOcOBcTnUhwekkGlsfWEt2%2FkHflB7WqKomGvs9F62l7a%2BRKQQQtRBD9VIlZiLEfRBRfQEmDb32cFQcSjznUP3um%2FkcbV%2BjmNEvqhOQuonjoQh7QF%2BbK811rduN5G6ICLD%2BnmPbi0ur2hrDLKhQYiwRdQrvKjcp%2F%2BL%2BnTz%2Fa4FgvmakvluPMMxbL15Dq5MTYAhOxXM%2FmvEpsoWmtfP9RxnkAIAr%2F5pVxqPxH93msKodRSXIct2l0OU0%2FL4eY506L%2B3GyJ6UMEZfjjCDbysNcWWmFweJP0Jz%2FA0g2gk80pGkYAAAAAElFTkSuQmCC

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/probcomp/genjax",
    "name": "GenJAX",
    "maintainer": "McCoy R. Becker",
    "docs_url": null,
    "requires_python": ">=3.9,<3.13",
    "maintainer_email": "mccoyb@mit.edu",
    "keywords": "artificial-intelligence,probabilistic-programming,bayesian-inference,differentiable-programming",
    "author": "McCoy R. Becker",
    "author_email": "mccoyb@mit.edu",
    "download_url": "https://files.pythonhosted.org/packages/74/f2/b8430f4911f28abb8cc8b562d1bcde639ec43e9d777fab9696160f2caeb7/genjax-0.1.0.tar.gz",
    "platform": null,
    "description": "<br>\n<p align=\"center\">\n<img width=\"400px\" src=\"./docs/assets/img/logo.png\"/>\n</p>\n<br>\n\n<div align=\"center\">\n<b><i>Probabilistic programming with Gen, built on top of JAX.</i></b>\n</div>\n<br>\n\n<div align=\"center\">\n\n[![][jax_badge]](https://github.com/google/jax)\n[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)\n[![Public API: beartyped](https://raw.githubusercontent.com/beartype/beartype-assets/main/badge/bear-ified.svg?style=flat-square)](https://beartype.readthedocs.io)\n\n| **Documentation** |          **Build status**          |\n| :---------------: | :--------------------------------: |\n| [![](https://img.shields.io/badge/docs-stable-blue.svg?style=flat-square)](https://probcomp.github.io/genjax/) [![](https://img.shields.io/badge/jupyter-%23FA0F00.svg?style=flat-square&logo=jupyter&logoColor=white)](https://probcomp.github.io/genjax/notebooks/) | [![][main_build_action_badge]][main_build_status_url] [![][nightly_build_action_badge]][nightly_build_status_url] |\n\n</div>\n\n[main_build_action_badge]: https://github.com/probcomp/genjax/actions/workflows/ci.yml/badge.svg?style=flat-square&branch=main\n[nightly_build_action_badge]: https://github.com/probcomp/genjax/actions/workflows/ci.yml/badge.svg?style=flat-square&branch=nightly\n[actions]: https://github.com/probcomp/genjax/actions\n[main_build_status_url]: https://github.com/probcomp/genjax/actions/workflows/ci.yml?query=branch%3Amain\n[nightly_build_status_url]: https://github.com/probcomp/genjax/actions/workflows/ci.yml?query=branch%3Anightly\n\n\n<div align=\"center\">\n<b>(Early stage)</b> \ud83d\udd2a expect sharp edges \ud83d\udd2a\n</div>\n\n## \ud83d\udd0e What is GenJAX?\n\nGen is a multi-paradigm (generative, differentiable, incremental) language for probabilistic programming focused on [**generative functions**: computational objects which represent probability measures over structured sample spaces](https://probcomp.github.io/genjax/notebooks/concepts/introduction/intro_to_genjax.html#what-is-a-generative-function).\n\nGenJAX is an implementation of Gen on top of [JAX](https://github.com/google/jax) - exposing the ability to programmatically construct and manipulate generative functions, as well as [JIT compile + auto-batch inference computations using generative functions onto GPU devices](https://jax.readthedocs.io/en/latest/jax-101/02-jitting.html).\n\n<div align=\"center\">\n<a href=\"https://probcomp.github.io/genjax/notebooks/index.html\">Jump into the notebooks!</a>\n<br>\n<br>\n</div>\n\n> GenJAX is part of a larger ecosystem of probabilistic programming tools based upon Gen. [Explore more...](https://www.gen.dev/)\n\n## Quickstart\n\nInstall GenJAX via [PyPI](https://pypi.org/project/genjax/):\n\n```sh\npip install genjax\n```\n\nThen install [JAX](https://github.com/google/jax) using [this\nguide](https://jax.readthedocs.io/en/latest/installation.html) to choose the\ncommand for the architecture you're targeting. To run GenJAX without GPU\nsupport:\n\n```sh\npip install jax[cpu]==0.4.20\n```\n\nOn a Linux machine with a GPU, run either of the following commands, depending\non which CUDA version (11 or 12) you have installed:\n\n```sh\npip install jax[cuda11_pip]==0.4.20\npip install jax[cuda12_pip]==0.4.20\n```\n\nThe following code snippet defines a generative function called `beta_bernoulli` that\n\n- takes a shape parameter `beta`\n- uses this to create and draw a value `p` from a [Beta\n  distribution](https://en.wikipedia.org/wiki/Beta_distribution)\n- Flips a coin that returns 1 with probability `p`, 0 with probability `1-p` and\n  returns that value\n\nJIT-compiles the function with JAX and then runs it with GenJAX:\n\n```python\nimport genjax\nimport jax\n\n@genjax.static\ndef beta_bernoulli(beta):\n    p = genjax.beta(0.0, beta) @ \"p\"\n    v = genjax.bernoulli(p) @ \"v\"\n    return v\n\nkey = jax.random.PRNGKey(314159)\ntrace = jax.jit(beta_bernoulli.simulate)(key, (0.5, ))\nchoices = trace.get_choices()\n```\n\n`choices` is a record of all random choices made during the execution of the\ngenerative function `beta_bernoulli`. Print it with a `genjax.console()`\ninstance:\n\n```python\nconsole = genjax.console()\nconsole.print(choices)\n```\n\nresulting in:\n\n```\n(HierarchicalChoiceMap)\n\u251c\u2500\u2500 :p\n\u2502   \u2514\u2500\u2500 (ValueChoice)\n\u2502       \u2514\u2500\u2500  f32[]\n\u2514\u2500\u2500 :v\n    \u2514\u2500\u2500 (ValueChoice)\n        \u2514\u2500\u2500  i32[]\n```\n\n## References\n\nMany bits of knowledge have gone into this project -- [you can find many of these bits at the MIT Probabilistic Computing Project page](http://probcomp.csail.mit.edu/) under publications. Here's an abbreviated list of high value references:\n\n- [Marco Cusumano-Towner's thesis on Gen][marco_thesis]\n- [The main Gen.jl repository][gen_jl]\n- (Trace types) [(Lew et al) trace types][trace_types]\n- (RAVI) [(Lew et al) Recursive auxiliary-variable inference][ravi]\n- (GenSP) [Alex Lew's Gen.jl implementation of GenSP][gen_sp]\n- (ADEV) [(Lew & Huot, et al) Automatic differentiation of expected values of probabilistic programs][adev]\n\n### JAX influences\n\nThis project has several JAX-based influences. Here's an abbreviated list:\n\n- [This notebook on static dispatch (Dan Piponi)][effect_handling_interp]\n- [Equinox (Patrick Kidger's work on neural networks via callable Pytrees)][equinox]\n- [Oryx (interpreters and interpreter design)][oryx]\n\n### Acknowledgements\n\nThe maintainers of this library would like to acknowledge the JAX and Oryx maintainers for useful discussions and reference code for interpreter-based transformation patterns.\n\n---\n\n<div align=\"center\">\nCreated and maintained by the <a href=\"http://probcomp.csail.mit.edu/\">MIT Probabilistic Computing Project</a>. All code is licensed under the <a href=\"LICENSE\">Apache 2.0 License</a>.\n</div>\n\n[marco_thesis]: https://www.mct.dev/assets/mct-thesis.pdf\n[gen_jl]: https://github.com/probcomp/Gen.jl\n[trace_types]: https://dl.acm.org/doi/10.1145/3371087\n[adev]: https://arxiv.org/abs/2212.06386\n[ravi]: https://arxiv.org/abs/2203.02836\n[gen_sp]: https://github.com/probcomp/GenSP.jl\n[effect_handling_interp]: https://colab.research.google.com/drive/1HGs59anVC2AOsmt7C4v8yD6v8gZSJGm6#scrollTo=ukjVJ2Ls_6Q3\n[equinox]: https://github.com/patrick-kidger/equinox\n[oryx]: https://github.com/jax-ml/oryx\n[jax_badge]: https://img.shields.io/badge/JAX-Accelerated-9cf.svg?style=flat-square&logo=%2B7u3les7u7F3ZIQ3N2tbng8aXFC0uAuKf2hmlJ3AapIgobMv7t0w%2Ba50JzzJdlhlvNldubeq%2FY%2BXrTS1z%2B6sttrKfQOOY4ns13ecFImb47pVvIkukNe4y3Junr1kSZ%2Bb3Na248tx7rKiHlPo6Ryse%2F11NKQuk%2FV3tfL52yHtXm8TGYS1wk4J093wrPQPngRJH9HH1x2fAjMhcIeIaXKQCmd2Gn7IqSvG83BueT0CMkTyESUqm3vRRggTdOBIb1HFDaNl8Gdg91AFGkO7QXe8gJInpoDjEXC9gbhtWH3rjZ%2F9yK6t42Y9zyiC1iLhZA8JQe4eqKXklrJF0MqfPv2bc2wzPZjpnEyMEVlEZCKQzYCJhE8QEtIL1RaXEVFEGmEaTn96VuLDzWflLFbgvqUec3BPVBmeBnNwUiakq1I31UcPaTSR8%2B1LnditsscaB2A48K6D9SoZDD2O6bELvA0JGhl4zIYZzcWtD%2BMfdvdHNsDOHciXwBPN18lj7sy79qQCTNK3nxBZXakqbZFO2jHskA7zBs%2BJhmDmr0RhoadIZjYxKIVHpCZngPMZUKoQKrfEoz1PfZZdKAe2CvP4XnYE8k2LLMdMumwrLaNlomyVqK0UdwN%2BD7AAz73dYBpPg6gPiCN8TXFHCI2s7AWYesJgTabD%2FS5uXDTuwVaAvvghncTdk1DYGkL0daAs%2BsLiutLrn0%2BRMNXpunC7mgkCpshfbw4OhrUvMkYo%2F0c4XtHS1waY4mlG6To8oG1TKjs78xV5fAkSgqcZSL0GoszfxEAW0fUludRNWlIhGsljzVjctr8rJOkCpskKaDYIlgkVoCmF0kp%2FbW%2FU%2F%2B8QNdXPztbAc4kFxIEmNGwKuI9y5gnBMH%2BakiZxlfGaLP48kyj4qPFkeIPh0Q6lt861zZF%2BgBpDcAxT3gEOjGxMDLQRSn9XaDzPWdOstkEN7uez6jmgLOYilR7NkFwLh%2B4G0SQMnMwRp8jaCrwEs8eEmFW2VsNd07HQdP4TgWxNTYcFcKHPhRYFOWLfJJBE5FefTQsWiKRaOw6FBr6ob1RP3EoqdbHsWFDwAYvaVI28DaK8AHs51tU%2BA3Z8CUXvZ1jnSR7SRS2SnwKw4O8B1rCjwrjgt1gSrjXnWhBxjD0Hidm4vfj3e3riUP5PcUCYlZxsYFDK41XnLlUANwVeeILFde%2BGKLhk3zgyZNeQjcSHPMEKSyPPQKfIcKfIqCf8yN95MGZZ1bj98WJ%2BOorQzxsPqcYdX9orw8420jBQNfJVVmTOStEUqFz5dq%2F2tHUY3LbjMh0qYxCwCGxRep8%2FK4ZnldzuUkjJLPDhkzrUFBoHYBjk3odtNMYoJVGx9BG2JTNVehksmRaGUwMbYQITk3Xw9gOxbNoGaA8RWjwuQdsXdGvpdty7Su2%2Fqn0qbzWsXYp0nqVpet0O6zzugva1MZHUdwHk9G8aH7raHua9AIxzzjxDaw4w4cpvEQlM84kwdI0hkpsPpcOtUeaVM8hQT2Qtb4ckUbaYw4fXzGAqSVEd8CGpqamj%2F9Q2pPX7miW0NlHlDE81AxLSI2wyK6xf6vfrcgEwb0PAtPaHM1%2BNXzGXAlMRcUIrMpiE6%2Bxv0cyxSrC6FmjzvkWJE3OxpY%2BzmpsANFBxK6RuIJvXe7bUHNd4zfCwvPPh9unSO%2BbIL2JY53QDqvdbsEi2%2BuwEEHPsfFRdOqjHcjTaCLmWdBewtKzHEwKZynSGgtTaSqx7dwMeBLRhR1LETDhu76vgTFfMLi8zc8F7hoRPpAYjAWCp0Jy5dzfSEfltGU6M9oVCIATnPoGKImDUJNfK0JS37QTc9yY7eDKzIX5wR4wN8RTya4jETAvZDCmFeEPwhNXoOlQt5JnRzqhxLZBpY%2BT5mZD3M4MfLnDW6U%2Fy6jkaDXtysDm8vjxY%2FXYnLebkelXaQtSSge2IhBj9kjMLF41duDUNRiDLHEzfaigsoxRzWG6B0kZ2%2BoRA3dD2lRa44ZrM%2FBW5ANziVApGLaKCYucXOCEdhoew5Y%2Btu65VwJqxUC1j4lav6UwpIJfnRswQUIMawPSr2LGp6WwLDYJ2TwoMNbf6Tdni%2FEuNvAdEvuUZAwFERLVXg7pg9xt1djZgqV7DmuHFGQI9Sje2A9dR%2FFDd0osztIRYnln1hdW1dff%2B1gtNLN1u0ViZy9BBlu%2BzBNUK%2BrIaP9Nla2TG%2BETHwq2kXzmS4XxXmSVan9KMYUprrbgFJqCndyIw9fgdh8dMvzIiW0sngbxoGlniN6LffruTEIGE9khBw5T2FDmWlTYqrnEPa7aF%2FYYcPYiUE48Ul5jhP82tj%2FiESyJilCeLdQRpod6No3xJNNHeZBpOBsiAzm5rg2dBZYSyH9Hob0EOFqqh3vWOuHbFR5eXcORp4OzwTUA4rUzVfJ4q%2FIa1GzCrzjOMxQr5uqLAWUOwgaHOphrgF0r2epYh%2FytdjBmUAurfM6CxruT3Ee%2BDv2%2FHAwK4RUIPskqK%2Fw4%2FR1F1bWfHjbNiXcYl6RwGJcMOMdXZaEVxCutSN1SGLMx3JfzCdlU8THZFFC%2BJJuB2964wSGdmq3I2FEcpWYVfHm4jmXd%2BRn7agFn9oFaWGYhBmJs5v5a0LZUjc3Sr4Ep%2FmFYlX8OdLlFYidM%2B731v7Ly4lfu85l3SSMTAcd5Bg2Sl%2FIHBm3RuacVx%2BrHpFcWjxztavOcOBcTnUhwekkGlsfWEt2%2FkHflB7WqKomGvs9F62l7a%2BRKQQQtRBD9VIlZiLEfRBRfQEmDb32cFQcSjznUP3um%2FkcbV%2BjmNEvqhOQuonjoQh7QF%2BbK811rduN5G6ICLD%2BnmPbi0ur2hrDLKhQYiwRdQrvKjcp%2F%2BL%2BnTz%2Fa4FgvmakvluPMMxbL15Dq5MTYAhOxXM%2FmvEpsoWmtfP9RxnkAIAr%2F5pVxqPxH93msKodRSXIct2l0OU0%2FL4eY506L%2B3GyJ6UMEZfjjCDbysNcWWmFweJP0Jz%2FA0g2gk80pGkYAAAAAElFTkSuQmCC\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Probabilistic programming with Gen, built on top of JAX.",
    "version": "0.1.0",
    "project_urls": {
        "Changelog": "https://github.com/probcomp/genjax/releases",
        "Documentation": "https://probcomp.github.io/genjax/",
        "Homepage": "https://github.com/probcomp/genjax",
        "Repository": "https://github.com/probcomp/genjax"
    },
    "split_keywords": [
        "artificial-intelligence",
        "probabilistic-programming",
        "bayesian-inference",
        "differentiable-programming"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5e010fed3241b35260dc96ec4285b925957d56e6f0e05192539eaba6a3499371",
                "md5": "56fa8dd98b4f5caff188a5613289d0e5",
                "sha256": "8c5e84700cff4e67d7871f52988e27702b1f95e28caa87be69d8f84901890a55"
            },
            "downloads": -1,
            "filename": "genjax-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "56fa8dd98b4f5caff188a5613289d0e5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9,<3.13",
            "size": 174836,
            "upload_time": "2024-01-12T22:56:29",
            "upload_time_iso_8601": "2024-01-12T22:56:29.542972Z",
            "url": "https://files.pythonhosted.org/packages/5e/01/0fed3241b35260dc96ec4285b925957d56e6f0e05192539eaba6a3499371/genjax-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "74f2b8430f4911f28abb8cc8b562d1bcde639ec43e9d777fab9696160f2caeb7",
                "md5": "f98d2da8b2b9711ee7e640822219e010",
                "sha256": "ade839b4849040cb5643f3caa22092697852f719f169c4ead0d5bc0daa1e1a5a"
            },
            "downloads": -1,
            "filename": "genjax-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "f98d2da8b2b9711ee7e640822219e010",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9,<3.13",
            "size": 99501,
            "upload_time": "2024-01-12T22:56:31",
            "upload_time_iso_8601": "2024-01-12T22:56:31.552942Z",
            "url": "https://files.pythonhosted.org/packages/74/f2/b8430f4911f28abb8cc8b562d1bcde639ec43e9d777fab9696160f2caeb7/genjax-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-12 22:56:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "probcomp",
    "github_project": "genjax",
    "github_not_found": true,
    "lcname": "genjax"
}
        
Elapsed time: 0.16625s