IESEGRecSys


NameIESEGRecSys JSON
Version 0.23.8 PyPI version JSON
download
home_pagehttps://github.com/pnborchert
SummaryRecommendation Systems - IESEG School of Management
upload_time2023-03-13 15:14:31
maintainer
docs_urlNone
authorPhilipp Borchert
requires_python
licenseMIT
keywords ieseg
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <!-- DOCUMENT STYLE -->
<style>
    body {
        font-family: "Calibri";
        padding-left:1.5cm;
        padding-right:1.5cm;
    }
</style>

<!-- HEADER -->
<img src="https://www.ieseg.fr/wp-content/uploads/IESEG-Logo-2012-rgb.jpg" alt="drawing" style="width:50%;padding-bottom:1cm;"/>
<span style="float:right;">
    <br>
    Recommendation Systems
    <br>
    Module
    <br>
    Class: 2022 & 2023
</span>

<!-- CONTENT -->

---

## Package dependencies:
<center> 
 <a href="https://surpriselib.com/"><image src="https://surpriselib.com/logo_white.svg" width="30%"></a>
 <a href="https://scikit-learn.org/stable/"><image src="https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Scikit_learn_logo_small.svg/2560px-Scikit_learn_logo_small.svg.png" width="25%" style="padding-left:0.5cm;"></a>
</center>

---

## Overview

- Model evaluation (`eval.py`):
    - Regression metrics
        - RMSE
        - MAE
    - Classification metrics
        - Precision
        - Recall
        - F1
    - Ranking metrics
        - NDCG
    - `eval.evaluate` computes all above mentioned metrics 
- Content based Recommender System (`model.py`)
- Helper functions (`utils.py`)
    - `get_top_n`: Compute Top-N recommendations from predictions 
    - `predict_user_topn`: Compute Top-N recommendations for a user 

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pnborchert",
    "name": "IESEGRecSys",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "IESEG",
    "author": "Philipp Borchert",
    "author_email": "p.borchert@ieseg.fr",
    "download_url": "https://files.pythonhosted.org/packages/e3/75/9217df68cc1088ae00033efc5794d7d81bb69a428f2bfd6ccf9ced2aedaa/IESEGRecSys-0.23.8.tar.gz",
    "platform": null,
    "description": "<!-- DOCUMENT STYLE -->\r\n<style>\r\n    body {\r\n        font-family: \"Calibri\";\r\n        padding-left:1.5cm;\r\n        padding-right:1.5cm;\r\n    }\r\n</style>\r\n\r\n<!-- HEADER -->\r\n<img src=\"https://www.ieseg.fr/wp-content/uploads/IESEG-Logo-2012-rgb.jpg\" alt=\"drawing\" style=\"width:50%;padding-bottom:1cm;\"/>\r\n<span style=\"float:right;\">\r\n    <br>\r\n    Recommendation Systems\r\n    <br>\r\n    Module\r\n    <br>\r\n    Class: 2022 & 2023\r\n</span>\r\n\r\n<!-- CONTENT -->\r\n\r\n---\r\n\r\n## Package dependencies:\r\n<center> \r\n <a href=\"https://surpriselib.com/\"><image src=\"https://surpriselib.com/logo_white.svg\" width=\"30%\"></a>\r\n <a href=\"https://scikit-learn.org/stable/\"><image src=\"https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Scikit_learn_logo_small.svg/2560px-Scikit_learn_logo_small.svg.png\" width=\"25%\" style=\"padding-left:0.5cm;\"></a>\r\n</center>\r\n\r\n---\r\n\r\n## Overview\r\n\r\n- Model evaluation (`eval.py`):\r\n    - Regression metrics\r\n        - RMSE\r\n        - MAE\r\n    - Classification metrics\r\n        - Precision\r\n        - Recall\r\n        - F1\r\n    - Ranking metrics\r\n        - NDCG\r\n    - `eval.evaluate` computes all above mentioned metrics \r\n- Content based Recommender System (`model.py`)\r\n- Helper functions (`utils.py`)\r\n    - `get_top_n`: Compute Top-N recommendations from predictions \r\n    - `predict_user_topn`: Compute Top-N recommendations for a user \r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Recommendation Systems - IESEG School of Management",
    "version": "0.23.8",
    "split_keywords": [
        "ieseg"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e3759217df68cc1088ae00033efc5794d7d81bb69a428f2bfd6ccf9ced2aedaa",
                "md5": "0d9e739c05a697f2cc793b7fc84a9105",
                "sha256": "8d35a2e28083482d563581e4cfc5fec2e402268ecc0b790c709c93cc7d1cd7d4"
            },
            "downloads": -1,
            "filename": "IESEGRecSys-0.23.8.tar.gz",
            "has_sig": false,
            "md5_digest": "0d9e739c05a697f2cc793b7fc84a9105",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 7648,
            "upload_time": "2023-03-13T15:14:31",
            "upload_time_iso_8601": "2023-03-13T15:14:31.835489Z",
            "url": "https://files.pythonhosted.org/packages/e3/75/9217df68cc1088ae00033efc5794d7d81bb69a428f2bfd6ccf9ced2aedaa/IESEGRecSys-0.23.8.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-03-13 15:14:31",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "iesegrecsys"
}
        
Elapsed time: 0.05009s