<!-- DOCUMENT STYLE -->
<style>
body {
font-family: "Calibri";
padding-left:1.5cm;
padding-right:1.5cm;
}
</style>
<!-- HEADER -->
<img src="https://www.ieseg.fr/wp-content/uploads/IESEG-Logo-2012-rgb.jpg" alt="drawing" style="width:50%;padding-bottom:1cm;"/>
<span style="float:right;">
<br>
Recommendation Systems
<br>
Module
<br>
Class: 2022 & 2023
</span>
<!-- CONTENT -->
---
## Package dependencies:
<center>
<a href="https://surpriselib.com/"><image src="https://surpriselib.com/logo_white.svg" width="30%"></a>
<a href="https://scikit-learn.org/stable/"><image src="https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Scikit_learn_logo_small.svg/2560px-Scikit_learn_logo_small.svg.png" width="25%" style="padding-left:0.5cm;"></a>
</center>
---
## Overview
- Model evaluation (`eval.py`):
- Regression metrics
- RMSE
- MAE
- Classification metrics
- Precision
- Recall
- F1
- Ranking metrics
- NDCG
- `eval.evaluate` computes all above mentioned metrics
- Content based Recommender System (`model.py`)
- Helper functions (`utils.py`)
- `get_top_n`: Compute Top-N recommendations from predictions
- `predict_user_topn`: Compute Top-N recommendations for a user
Raw data
{
"_id": null,
"home_page": "https://github.com/pnborchert",
"name": "IESEGRecSys",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "IESEG",
"author": "Philipp Borchert",
"author_email": "p.borchert@ieseg.fr",
"download_url": "https://files.pythonhosted.org/packages/e3/75/9217df68cc1088ae00033efc5794d7d81bb69a428f2bfd6ccf9ced2aedaa/IESEGRecSys-0.23.8.tar.gz",
"platform": null,
"description": "<!-- DOCUMENT STYLE -->\r\n<style>\r\n body {\r\n font-family: \"Calibri\";\r\n padding-left:1.5cm;\r\n padding-right:1.5cm;\r\n }\r\n</style>\r\n\r\n<!-- HEADER -->\r\n<img src=\"https://www.ieseg.fr/wp-content/uploads/IESEG-Logo-2012-rgb.jpg\" alt=\"drawing\" style=\"width:50%;padding-bottom:1cm;\"/>\r\n<span style=\"float:right;\">\r\n <br>\r\n Recommendation Systems\r\n <br>\r\n Module\r\n <br>\r\n Class: 2022 & 2023\r\n</span>\r\n\r\n<!-- CONTENT -->\r\n\r\n---\r\n\r\n## Package dependencies:\r\n<center> \r\n <a href=\"https://surpriselib.com/\"><image src=\"https://surpriselib.com/logo_white.svg\" width=\"30%\"></a>\r\n <a href=\"https://scikit-learn.org/stable/\"><image src=\"https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Scikit_learn_logo_small.svg/2560px-Scikit_learn_logo_small.svg.png\" width=\"25%\" style=\"padding-left:0.5cm;\"></a>\r\n</center>\r\n\r\n---\r\n\r\n## Overview\r\n\r\n- Model evaluation (`eval.py`):\r\n - Regression metrics\r\n - RMSE\r\n - MAE\r\n - Classification metrics\r\n - Precision\r\n - Recall\r\n - F1\r\n - Ranking metrics\r\n - NDCG\r\n - `eval.evaluate` computes all above mentioned metrics \r\n- Content based Recommender System (`model.py`)\r\n- Helper functions (`utils.py`)\r\n - `get_top_n`: Compute Top-N recommendations from predictions \r\n - `predict_user_topn`: Compute Top-N recommendations for a user \r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Recommendation Systems - IESEG School of Management",
"version": "0.23.8",
"split_keywords": [
"ieseg"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e3759217df68cc1088ae00033efc5794d7d81bb69a428f2bfd6ccf9ced2aedaa",
"md5": "0d9e739c05a697f2cc793b7fc84a9105",
"sha256": "8d35a2e28083482d563581e4cfc5fec2e402268ecc0b790c709c93cc7d1cd7d4"
},
"downloads": -1,
"filename": "IESEGRecSys-0.23.8.tar.gz",
"has_sig": false,
"md5_digest": "0d9e739c05a697f2cc793b7fc84a9105",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 7648,
"upload_time": "2023-03-13T15:14:31",
"upload_time_iso_8601": "2023-03-13T15:14:31.835489Z",
"url": "https://files.pythonhosted.org/packages/e3/75/9217df68cc1088ae00033efc5794d7d81bb69a428f2bfd6ccf9ced2aedaa/IESEGRecSys-0.23.8.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-03-13 15:14:31",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "iesegrecsys"
}