INTAKE2STAC


NameINTAKE2STAC JSON
Version 0.6 PyPI version JSON
download
home_pagehttps://codebase.helmholtz.cloud/CAT4KIT/intake2stac
SummaryA python module for creating STAC catalog from datasets in INTAKE
upload_time2023-03-20 12:45:12
maintainer
docs_urlNone
authorMostafa Hadizadeh
requires_python>=3.7
licenseEUPL-1.2
keywords cat4kit kit exu-vorhaben-research-data-management helmholtz
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ===========
INTAKE2STAC
===========


.. image:: https://codebase.helmholtz.cloud/cat4kit/tds2stac/-/raw/main/intake2stac.png


=========

.. image:: https://img.shields.io/pypi/v/intake2stac.svg
        :target: https://pypi.python.org/pypi/intake2stac


.. image:: https://readthedocs.org/projects/intake2stac/badge/?version=latest
        :target: https://intake2stac.readthedocs.io/en/latest/?version=latest
        :alt: Documentation Status



STAC specification is a method of exposing spatial and temporal data collections in a standardized manner. Specifically, the `SpatioTemporal Asset Catalog (STAC) <https://stacspec.org/en>`_ specification describes and catalogs spatiotemporal assets using a common structure. 
This package creates STAC metadata by harvesting dataset details from the `INTAKE <https://intake.readthedocs.io/en/latest/index.html>`_ interface. After creating STAC Catalogs, Collections, and Items, it imports them into `pgSTAC <https://stac-utils.github.io/pgstac/pgstac/>`_ and `STAC-FastAPI <https://stac-utils.github.io/stac-fastapi/>`_.

* Free software: EUPL-1.2
* Documentation: https://intake2stac.readthedocs.io.



Installation from PyPi
------------------------
.. code:: bash

   pip install intake2stac

Installation for development
--------------------------------
.. code:: bash

   git clone https://codebase.helmholtz.cloud/cat4kit/intake2stac.git
   cd intake2stac
   python -m venv venv
   source venv/bin/activate
   pip install -r requirements_dev.txt


Installing using Docker
------------------------

For runnig by docker use `this <https://codebase.helmholtz.cloud/cat4kit/ds2stac-docker>`_ repository.


Usage
----------------
 
Use case:

You can use the following template for creating STAC catalog from the TDS web service for your project.

You can change configuration of PgSTAC in `config_pgstac <./intake2stac/config_pgstac.py>`_

.. code::python
        from intake2stac import intake2stac
        intake2stac.Convertor(
                "https://s3.imk-ifu.kit.edu:8082/climatedata/catalog.yaml",
                driver="zarr",
                stac=True or False,
                stac_id="an ID for the main STAC catalog",
                stac_description="Description for the main STAC catalog",
                stac_dir="/path/to/save/stac/catalogs/",
                stac_catalog_dynamic=True or False,
        )

.. code::python
        output:
                Intake catalog details:
                Version:  0.1
                Drivers:  Zarr
                Parameter:  mswx v1.0e  | Description:  MSWX global climate data  | urlpath:  https://s3.imk-ifu.kit.edu:8082/climatedata/mswx_daily_v1.0.zarr
                Parameter:  eobs v24.0e  | Description:  E-OBS v24.0e climate data for Europe  | urlpath:  https://s3.imk-ifu.kit.edu:8082/climatedata/eobs_v24.0e.zarr
                Parameter:  MERRA2 tavgM 2d aer NX  | Description:  M2TMNXAER (or tavgM_2d_aer_Nx) is a time-averaged 2-dimensional monthly mean data collection in Modern-Era 
                Retrospective analysis for Research and Applications version 2 (MERRA-2). This collection consists of assimilated aerosol diagnostics, such as column mass density 
                of aerosol components (black carbon, dust, sea salt, sulfate, and organic carbon), surface mass concentration of aerosol components, and total extinction (and scattering )
                aerosol optical thickness (AOT) at 550 nm. The total PM1.0, PM2.5, and PM10 may be derived with the formula described in the FAQs under the Documentation tab of 
                this page. The collection also includes variance of certain parameters.  | urlpath:  https://s3.imk-ifu.kit.edu:8082/climatedata/merra2_monthly_tavgM_2d_aer_Nx.zarr
                Parameter:  ERA5 daily surface variables  | Description:  Selection of surface variables (precip, temperature, etc.) from ECMWFs latest atmospheric reanalysis ERA5 
                | urlpath:  https://s3.imk-ifu.kit.edu:8082/climatedata/era5_daily.zarr
                ./mswx v1.0e/collection.json
                |____ ./mswx_v1.0e/mswx_v1.0e.json
                ./eobs v24.0e/collection.json
                |____ ./eobs_v24.0e/eobs_v24.0e.json
                ./MERRA2 tavgM 2d aer NX/collection.json
                |____ ./MERRA2_tavgM_2d_aer_NX/MERRA2_tavgM_2d_aer_NX.json
                ./ERA5 daily surface variables/collection.json
                |____ ./ERA5_daily_surface_variables/ERA5_daily_surface_variables.json


Copyright
---------
Copyright © 2023 Karlsruher Institut für Technologie

Licensed under the EUPL-1.2-or-later

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the EUPL-1.2 license for more details.

You should have received a copy of the EUPL-1.2 license along with this
program. If not, see https://www.eupl.eu/.


            

Raw data

            {
    "_id": null,
    "home_page": "https://codebase.helmholtz.cloud/CAT4KIT/intake2stac",
    "name": "INTAKE2STAC",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "CAT4KIT,KIT,EXU-Vorhaben-Research-Data-Management,helmholtz",
    "author": "Mostafa Hadizadeh",
    "author_email": "mostafa.hadizadeh@kit.edu",
    "download_url": "https://files.pythonhosted.org/packages/f1/94/ea4e754ab2aeabc74ba8ddf390a2c38c38f99059c4ce03ea0e37b0d906f1/INTAKE2STAC-0.6.tar.gz",
    "platform": null,
    "description": "===========\nINTAKE2STAC\n===========\n\n\n.. image:: https://codebase.helmholtz.cloud/cat4kit/tds2stac/-/raw/main/intake2stac.png\n\n\n=========\n\n.. image:: https://img.shields.io/pypi/v/intake2stac.svg\n        :target: https://pypi.python.org/pypi/intake2stac\n\n\n.. image:: https://readthedocs.org/projects/intake2stac/badge/?version=latest\n        :target: https://intake2stac.readthedocs.io/en/latest/?version=latest\n        :alt: Documentation Status\n\n\n\nSTAC specification is a method of exposing spatial and temporal data collections in a standardized manner. Specifically, the `SpatioTemporal Asset Catalog (STAC) <https://stacspec.org/en>`_ specification describes and catalogs spatiotemporal assets using a common structure. \nThis package creates STAC metadata by harvesting dataset details from the `INTAKE <https://intake.readthedocs.io/en/latest/index.html>`_ interface. After creating STAC Catalogs, Collections, and Items, it imports them into `pgSTAC <https://stac-utils.github.io/pgstac/pgstac/>`_ and `STAC-FastAPI <https://stac-utils.github.io/stac-fastapi/>`_.\n\n* Free software: EUPL-1.2\n* Documentation: https://intake2stac.readthedocs.io.\n\n\n\nInstallation from PyPi\n------------------------\n.. code:: bash\n\n   pip install intake2stac\n\nInstallation for development\n--------------------------------\n.. code:: bash\n\n   git clone https://codebase.helmholtz.cloud/cat4kit/intake2stac.git\n   cd intake2stac\n   python -m venv venv\n   source venv/bin/activate\n   pip install -r requirements_dev.txt\n\n\nInstalling using Docker\n------------------------\n\nFor runnig by docker use `this <https://codebase.helmholtz.cloud/cat4kit/ds2stac-docker>`_ repository.\n\n\nUsage\n----------------\n \nUse case:\n\nYou can use the following template for creating STAC catalog from the TDS web service for your project.\n\nYou can change configuration of PgSTAC in `config_pgstac <./intake2stac/config_pgstac.py>`_\n\n.. code::python\n        from intake2stac import intake2stac\n        intake2stac.Convertor(\n                \"https://s3.imk-ifu.kit.edu:8082/climatedata/catalog.yaml\",\n                driver=\"zarr\",\n                stac=True or False,\n                stac_id=\"an ID for the main STAC catalog\",\n                stac_description=\"Description for the main STAC catalog\",\n                stac_dir=\"/path/to/save/stac/catalogs/\",\n                stac_catalog_dynamic=True or False,\n        )\n\n.. code::python\n        output:\n                Intake catalog details:\n                Version:  0.1\n                Drivers:  Zarr\n                Parameter:  mswx v1.0e  | Description:  MSWX global climate data  | urlpath:  https://s3.imk-ifu.kit.edu:8082/climatedata/mswx_daily_v1.0.zarr\n                Parameter:  eobs v24.0e  | Description:  E-OBS v24.0e climate data for Europe  | urlpath:  https://s3.imk-ifu.kit.edu:8082/climatedata/eobs_v24.0e.zarr\n                Parameter:  MERRA2 tavgM 2d aer NX  | Description:  M2TMNXAER (or tavgM_2d_aer_Nx) is a time-averaged 2-dimensional monthly mean data collection in Modern-Era \n                Retrospective analysis for Research and Applications version 2 (MERRA-2). This collection consists of assimilated aerosol diagnostics, such as column mass density \n                of aerosol components (black carbon, dust, sea salt, sulfate, and organic carbon), surface mass concentration of aerosol components, and total extinction (and scattering )\n                aerosol optical thickness (AOT) at 550 nm. The total PM1.0, PM2.5, and PM10 may be derived with the formula described in the FAQs under the Documentation tab of \n                this page. The collection also includes variance of certain parameters.  | urlpath:  https://s3.imk-ifu.kit.edu:8082/climatedata/merra2_monthly_tavgM_2d_aer_Nx.zarr\n                Parameter:  ERA5 daily surface variables  | Description:  Selection of surface variables (precip, temperature, etc.) from ECMWFs latest atmospheric reanalysis ERA5 \n                | urlpath:  https://s3.imk-ifu.kit.edu:8082/climatedata/era5_daily.zarr\n                ./mswx v1.0e/collection.json\n                |____ ./mswx_v1.0e/mswx_v1.0e.json\n                ./eobs v24.0e/collection.json\n                |____ ./eobs_v24.0e/eobs_v24.0e.json\n                ./MERRA2 tavgM 2d aer NX/collection.json\n                |____ ./MERRA2_tavgM_2d_aer_NX/MERRA2_tavgM_2d_aer_NX.json\n                ./ERA5 daily surface variables/collection.json\n                |____ ./ERA5_daily_surface_variables/ERA5_daily_surface_variables.json\n\n\nCopyright\n---------\nCopyright \u00a9 2023 Karlsruher Institut f\u00fcr Technologie\n\nLicensed under the EUPL-1.2-or-later\n\nThis program is distributed in the hope that it will be useful, but WITHOUT ANY\nWARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A\nPARTICULAR PURPOSE. See the EUPL-1.2 license for more details.\n\nYou should have received a copy of the EUPL-1.2 license along with this\nprogram. If not, see https://www.eupl.eu/.\n\n",
    "bugtrack_url": null,
    "license": "EUPL-1.2",
    "summary": "A python module for creating STAC catalog from datasets in INTAKE",
    "version": "0.6",
    "split_keywords": [
        "cat4kit",
        "kit",
        "exu-vorhaben-research-data-management",
        "helmholtz"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1a272f72054e481267bbdf2c1f6e29d59460497707170ffa9eae37664677551d",
                "md5": "4c16d73c3023ecd7ec7a6fddb544a110",
                "sha256": "b63130cdd93dbeb21abb4ac8d5ee62e95e3a0a6c4d86319e1ba4714bf3df271b"
            },
            "downloads": -1,
            "filename": "INTAKE2STAC-0.6-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4c16d73c3023ecd7ec7a6fddb544a110",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.7",
            "size": 15402,
            "upload_time": "2023-03-20T12:45:10",
            "upload_time_iso_8601": "2023-03-20T12:45:10.491354Z",
            "url": "https://files.pythonhosted.org/packages/1a/27/2f72054e481267bbdf2c1f6e29d59460497707170ffa9eae37664677551d/INTAKE2STAC-0.6-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f194ea4e754ab2aeabc74ba8ddf390a2c38c38f99059c4ce03ea0e37b0d906f1",
                "md5": "43aac7a5ca38bc2a2d76904d03f39ca9",
                "sha256": "0bd91efdd5575cf3c8c5275ea6afa40ce491b829c51fea188567f345ea4f199a"
            },
            "downloads": -1,
            "filename": "INTAKE2STAC-0.6.tar.gz",
            "has_sig": false,
            "md5_digest": "43aac7a5ca38bc2a2d76904d03f39ca9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 39958,
            "upload_time": "2023-03-20T12:45:12",
            "upload_time_iso_8601": "2023-03-20T12:45:12.967213Z",
            "url": "https://files.pythonhosted.org/packages/f1/94/ea4e754ab2aeabc74ba8ddf390a2c38c38f99059c4ce03ea0e37b0d906f1/INTAKE2STAC-0.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-03-20 12:45:12",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "intake2stac"
}
        
Elapsed time: 0.16916s