Welcome to Intrinsic Physiology Feature Extractor (IPFX)
==========================================
IPFX is a Python package for computing intrinsic cell features from electrophysiology data. With this package you can:
- Perform cell data quality control (e.g. resting potential stability)
- Detect action potentials and their features (e.g. threshold time and voltage)
- Calculate features of spike trains (e.g., adaptation index)
- Calculate stimulus-specific cell features
This software is designed for use in the Allen Institute for Brain Science electrophysiology data processing pipeline.
For usage and installation instructions, see the [documentation](https://ipfx.readthedocs.io/en/latest/).
Quick Start
------------
To start analyzing data now, check out the [quick_start](https://ipfx.readthedocs.io/en/latest/quick_start.html) . For a more in depth guide to IPFX, see [tutorial](https://ipfx.readthedocs.io/en/latest/tutorial.html)
Contributing
------------
We welcome contributions! Please see our [contribution guide](https://github.com/AllenInstitute/ipfx/blob/master/CONTRIBUTING.md) for more information. Thank you!
Deprecation Warning
-------------------
The 2.0.0 release of IPFX drops support for Python 3.6 which reached end of life and stopped receiving security updated on December 23, 2021.
IPFX is now tested on Python 3.9 and higher.
Raw data
{
"_id": null,
"home_page": "https://github.com/AllenInstitute/ipfx",
"name": "IPFX",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "neuroscience, bioinformatics, scientific",
"author": "Allen Institute for Brain Science",
"author_email": "Marmot@AllenInstitute.onmicrosoft.com",
"download_url": "https://files.pythonhosted.org/packages/0f/49/d1323eaaff28f62971417f15361986bab76e577c3f0d544b241c533592d7/ipfx-2.0.0.tar.gz",
"platform": null,
"description": "Welcome to Intrinsic Physiology Feature Extractor (IPFX)\n==========================================\n\nIPFX is a Python package for computing intrinsic cell features from electrophysiology data. With this package you can:\n\n- Perform cell data quality control (e.g. resting potential stability)\n- Detect action potentials and their features (e.g. threshold time and voltage)\n- Calculate features of spike trains (e.g., adaptation index)\n- Calculate stimulus-specific cell features\n\nThis software is designed for use in the Allen Institute for Brain Science electrophysiology data processing pipeline.\n\nFor usage and installation instructions, see the [documentation](https://ipfx.readthedocs.io/en/latest/).\n\nQuick Start\n------------\nTo start analyzing data now, check out the [quick_start](https://ipfx.readthedocs.io/en/latest/quick_start.html) . For a more in depth guide to IPFX, see [tutorial](https://ipfx.readthedocs.io/en/latest/tutorial.html)\n\nContributing\n------------\nWe welcome contributions! Please see our [contribution guide](https://github.com/AllenInstitute/ipfx/blob/master/CONTRIBUTING.md) for more information. Thank you!\n\nDeprecation Warning\n-------------------\n\nThe 2.0.0 release of IPFX drops support for Python 3.6 which reached end of life and stopped receiving security updated on December 23, 2021.\nIPFX is now tested on Python 3.9 and higher.\n",
"bugtrack_url": null,
"license": null,
"summary": "Intrinsic Physiology Feature Extractor (IPFX) - tool for computing neuronal features from the intracellular electrophysiological recordings",
"version": "2.0.0",
"project_urls": {
"Homepage": "https://github.com/AllenInstitute/ipfx"
},
"split_keywords": [
"neuroscience",
" bioinformatics",
" scientific"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "2cd26e42e1c0dbe34059ba729ddc13eec629a322c2ef5281ad25ec45f44b6b42",
"md5": "57514d20bdabe39a6cbc6f272661af65",
"sha256": "9a3c4f6eafb1ab1c9fdf299d2974eac1c989a2b7704ac636f74db40229c842dc"
},
"downloads": -1,
"filename": "IPFX-2.0.0-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "57514d20bdabe39a6cbc6f272661af65",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 1859873,
"upload_time": "2024-10-28T21:56:19",
"upload_time_iso_8601": "2024-10-28T21:56:19.082662Z",
"url": "https://files.pythonhosted.org/packages/2c/d2/6e42e1c0dbe34059ba729ddc13eec629a322c2ef5281ad25ec45f44b6b42/IPFX-2.0.0-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0f49d1323eaaff28f62971417f15361986bab76e577c3f0d544b241c533592d7",
"md5": "88a45391da516f314b06ce18ef1873c1",
"sha256": "391cd6ad5cda13eeea2d5928c00a9142f3c4401f971f8c96efa7be622a669691"
},
"downloads": -1,
"filename": "ipfx-2.0.0.tar.gz",
"has_sig": false,
"md5_digest": "88a45391da516f314b06ce18ef1873c1",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 1863772,
"upload_time": "2024-10-28T21:56:21",
"upload_time_iso_8601": "2024-10-28T21:56:21.156226Z",
"url": "https://files.pythonhosted.org/packages/0f/49/d1323eaaff28f62971417f15361986bab76e577c3f0d544b241c533592d7/ipfx-2.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-28 21:56:21",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "AllenInstitute",
"github_project": "ipfx",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"circle": true,
"requirements": [],
"lcname": "ipfx"
}