Name | ISCT JSON |
Version |
0.1.2
JSON |
| download |
home_page | None |
Summary | Interpretable Sequence Clustering Tree |
upload_time | 2025-01-12 15:05:14 |
maintainer | None |
docs_url | None |
author | None |
requires_python | None |
license | None |
keywords |
isct
sequence
clustering
tree
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Interpretable-Sequence-Clustering-Tree
Source Code for Interpretable sequence clustering https://www.sciencedirect.com/science/article/pii/S0020025524013677
## Running
We added the tree structure visualization, to use it on linux please first
```
sudo apt-get install graphviz
export PATH=$PATH:/usr/local/bin
source ~/.bashrc
```
We recommend using Pypy, which may give exponential speedups on larger datasets
## Usage
### Random Projection on Python version
```
pip install ISCT
```
<!-- code -->
```python
from ISCT import ISCT
sequences = [
['a', 'g', 't', 't', 'c'],
['a', 't', 'g', 'g', 't', 'u', 't'],
['a', 'c', 't', 'u', 'u', 'a', 'a'],
['a', 'c', 'a', 'u', 'a', 't', 'c', 't'],
['a', 'g', 'g', 'c', 'a', 'a', 'c'],
['a', 'c', 'g', 'g', 'c', 'c', 'a', 'a']]
isct = ISCT(num_clusters = 3, visulization_name = 'test', min_sample=2) # if visulization_name is provided, it generates the "test.pdf".
y_pred = isct.fit(sequences)
print(y_pred)
```
<!--
### Random Projection CPP version
1. First, compile the cpp file on your Linux in order to generate the fast Random Projection Generator.
2. Run ISCT_cpp.py to get the clustering results -->
## Dependencies
- Python 3.9.16 (Pypy)
- NumPy 1.24.3
- Scikit-learn 1.2.2
- Pandas 2.0.1
- Prefixspan 0.5.2
## Visualization
ISCT could provide you with a highly concise and short clustering tree, taking poineer as example:
<img width="408" alt="image" src="https://github.com/jd445/Interpretable-Sequence-Clustering-Tree/assets/65555729/5a0a465f-0d7d-4d5c-a149-9ceb927abed9">
Raw data
{
"_id": null,
"home_page": null,
"name": "ISCT",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "ISCT, sequence, clustering, tree",
"author": null,
"author_email": "Junjie Dong <jd445@qq.com>",
"download_url": "https://files.pythonhosted.org/packages/27/ee/1ec3a4c83ddc5720debd246d552b1495b67bc53db2a44d0d785b7a1f0bcc/isct-0.1.2.tar.gz",
"platform": null,
"description": "# Interpretable-Sequence-Clustering-Tree\n\nSource Code for Interpretable sequence clustering https://www.sciencedirect.com/science/article/pii/S0020025524013677\n\n\n\n## Running\n\n\nWe added the tree structure visualization, to use it on linux please first \n\n```\nsudo apt-get install graphviz\nexport PATH=$PATH:/usr/local/bin\nsource ~/.bashrc\n```\nWe recommend using Pypy, which may give exponential speedups on larger datasets\n\n## Usage\n\n### Random Projection on Python version\n\n```\npip install ISCT\n```\n\n\n<!-- code -->\n```python\n\nfrom ISCT import ISCT\nsequences = [\n ['a', 'g', 't', 't', 'c'], \n ['a', 't', 'g', 'g', 't', 'u', 't'], \n ['a', 'c', 't', 'u', 'u', 'a', 'a'], \n ['a', 'c', 'a', 'u', 'a', 't', 'c', 't'], \n ['a', 'g', 'g', 'c', 'a', 'a', 'c'], \n ['a', 'c', 'g', 'g', 'c', 'c', 'a', 'a']]\nisct = ISCT(num_clusters = 3, visulization_name = 'test', min_sample=2) # if visulization_name is provided, it generates the \"test.pdf\".\ny_pred = isct.fit(sequences)\nprint(y_pred)\n```\n\n\n<!-- \n### Random Projection CPP version\n\n1. First, compile the cpp file on your Linux in order to generate the fast Random Projection Generator.\n2. Run ISCT_cpp.py to get the clustering results -->\n\n\n\n\n\n## Dependencies\n- Python 3.9.16 (Pypy)\n- NumPy 1.24.3\n- Scikit-learn 1.2.2\n- Pandas 2.0.1\n- Prefixspan 0.5.2\n\n\n## Visualization\n\nISCT could provide you with a highly concise and short clustering tree, taking poineer as example:\n<img width=\"408\" alt=\"image\" src=\"https://github.com/jd445/Interpretable-Sequence-Clustering-Tree/assets/65555729/5a0a465f-0d7d-4d5c-a149-9ceb927abed9\">\n",
"bugtrack_url": null,
"license": null,
"summary": "Interpretable Sequence Clustering Tree",
"version": "0.1.2",
"project_urls": {
"Issues": "https://github.com/jd445/Interpretable-Sequence-Clustering-Tree/issues",
"Source": "https://github.com/jd445/Interpretable-Sequence-Clustering-Tree"
},
"split_keywords": [
"isct",
" sequence",
" clustering",
" tree"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f205662685af65c318a522a87558142b6ad65aaeeafd9db2641fe3857d4720e9",
"md5": "4b54ee089ae6b8c87d21532c3523beba",
"sha256": "8285e5052bc65ae308c6d6bfbb06f2d193f05c144173f00a0b8e82a70c80799f"
},
"downloads": -1,
"filename": "ISCT-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4b54ee089ae6b8c87d21532c3523beba",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 9971,
"upload_time": "2025-01-12T15:05:11",
"upload_time_iso_8601": "2025-01-12T15:05:11.817354Z",
"url": "https://files.pythonhosted.org/packages/f2/05/662685af65c318a522a87558142b6ad65aaeeafd9db2641fe3857d4720e9/ISCT-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "27ee1ec3a4c83ddc5720debd246d552b1495b67bc53db2a44d0d785b7a1f0bcc",
"md5": "f80f104d3334c0f195c7272f9afdaa0c",
"sha256": "d8851ab4dcb63575a53707ef11da3b20d4d3ae748938304d9cfaed7b90f4c6d4"
},
"downloads": -1,
"filename": "isct-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "f80f104d3334c0f195c7272f9afdaa0c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 9142,
"upload_time": "2025-01-12T15:05:14",
"upload_time_iso_8601": "2025-01-12T15:05:14.256731Z",
"url": "https://files.pythonhosted.org/packages/27/ee/1ec3a4c83ddc5720debd246d552b1495b67bc53db2a44d0d785b7a1f0bcc/isct-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-12 15:05:14",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "jd445",
"github_project": "Interpretable-Sequence-Clustering-Tree",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "isct"
}