![InfSumPy Logo](https://github.com/wellington36/InfSumPy/raw/main/man/figures/logo_README.png)
--------------------------------------------------------------------------------
![PyPI](https://img.shields.io/pypi/v/InfSumPy?label=pypi%20package)
![versions](https://img.shields.io/pypi/pyversions/pybadges.svg)
![example workflow](https://github.com/wellington36/InfSumPy/actions/workflows/test_infsum.yml/badge.svg)
InfSumPy is a Python package that evaluates infinite positive sums with guaranteed error.
Using ratio and integral tests we evaluate series that pass these tests with controlled error.
## Instalation
Make sure you have the mpmath library installed:
```bash
pip install mpmath
```
To install the package, run the following command:
```bash
pip install infsumpy
```
# Usage
We have the transformations implemented above, and for use, we have the `infsum` function.
Which receives from input:
- _A series_: In the form of a function f: $\mathbb{N} \to \mathbb{R}$.
- _Method_: Can be `ratio`, `integral`, `threshold` or `fixed`.
- _Max terms_: The maximum number of terms.
- _Start terms_: The index of the first term of the series.
- _Epsilon_ (optional): The expected error tolerance (if the method is `ratio`, `integral` or `threshold`).
- _L_ (optional): Limit of the ratio of terms (if the method is `ratio`).
- _Integral of series_ (optional): The function of g(n) = ∫_n^∞ f(x) dx for the integral test (if the method is `integral`).
- _Precision_ (optional): The precision for the `mpmath` library (default value is 53).
The function returns the number of terms used in the sum and the approximation.
### Ratio test
```py
from infsumpy import infsum
# the infinity sum of n/(2**n) pass in the ratio test with limit L = 1/2,
# then we can evaluate with controled error
print(infsum(lambda n: n/(2**n), 'ratio', max_terms=10**4, initial=1, eps=2**(-52), L=1/2))
```
```bash
> (56, 2.0)
```
### Integral test
```py
from infsumpy import infsum
# the infinity sum of 1/n**2 pass in the integral test with integral
# g(n) = ∫_n^∞ 1/x**2 dx = 1/n, then we can evaluate with controled error
print(infsum(lambda n: 1/(n**2), 'integral', max_terms=10**4, initial=1, eps=10**(-3), g=lambda n: 1/n))
```
```bash
> (499, 1.64493406229104)
```
### Threshold (not guaranteed)
```py
from infsumpy import infsum
# we can also use a stoping criterio such that sum until the n-th are less
# than the epsilon, here for the infinity sum of 2/(2**n)
print(infsum(lambda n: n/(2**n), 'threshold', max_terms=10**4, initial=1, eps=2**(-52)))
```
```bash
> (57, 2.0)
```
### Fixed (not guaranteed)
```py
from infsumpy import infsum
# we can just sum a fixed number of terms of the infinite sum of 2/(2**n)
print(infsum(lambda n: n/(2**n), 'fixed', max_terms=10**4, initial=1))
```
```bash
> (10000, 2.0)
```
Raw data
{
"_id": null,
"home_page": "https://github.com/wellington36/InfSumPy",
"name": "InfSumPy",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "python, sum, series, infinite-series, approximation, guaranted-sum",
"author": "Wellington Silva",
"author_email": "<wellington.71319@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/a0/61/dd1d4fe8dceeb58ffd86c4e3ff31d850e180ebbfc28f4130302115057ea8/infsumpy-1.0.3.tar.gz",
"platform": null,
"description": "![InfSumPy Logo](https://github.com/wellington36/InfSumPy/raw/main/man/figures/logo_README.png)\n\n--------------------------------------------------------------------------------\n![PyPI](https://img.shields.io/pypi/v/InfSumPy?label=pypi%20package)\n![versions](https://img.shields.io/pypi/pyversions/pybadges.svg)\n![example workflow](https://github.com/wellington36/InfSumPy/actions/workflows/test_infsum.yml/badge.svg)\n\nInfSumPy is a Python package that evaluates infinite positive sums with guaranteed error.\nUsing ratio and integral tests we evaluate series that pass these tests with controlled error.\n\n## Instalation\n\nMake sure you have the mpmath library installed:\n\n```bash\npip install mpmath\n```\n\nTo install the package, run the following command:\n\n```bash\npip install infsumpy\n```\n\n# Usage\nWe have the transformations implemented above, and for use, we have the `infsum` function.\nWhich receives from input:\n\n- _A series_: In the form of a function f: $\\mathbb{N} \\to \\mathbb{R}$.\n- _Method_: Can be `ratio`, `integral`, `threshold` or `fixed`.\n- _Max terms_: The maximum number of terms.\n- _Start terms_: The index of the first term of the series.\n- _Epsilon_ (optional): The expected error tolerance (if the method is `ratio`, `integral` or `threshold`).\n- _L_ (optional): Limit of the ratio of terms (if the method is `ratio`).\n- _Integral of series_ (optional): The function of g(n) = \u222b_n^\u221e f(x) dx for the integral test (if the method is `integral`).\n- _Precision_ (optional): The precision for the `mpmath` library (default value is 53).\n\nThe function returns the number of terms used in the sum and the approximation.\n\n### Ratio test\n```py\nfrom infsumpy import infsum\n\n# the infinity sum of n/(2**n) pass in the ratio test with limit L = 1/2,\n# then we can evaluate with controled error\nprint(infsum(lambda n: n/(2**n), 'ratio', max_terms=10**4, initial=1, eps=2**(-52), L=1/2))\n```\n\n```bash\n> (56, 2.0)\n```\n\n### Integral test\n```py\nfrom infsumpy import infsum\n\n# the infinity sum of 1/n**2 pass in the integral test with integral\n# g(n) = \u222b_n^\u221e 1/x**2 dx = 1/n, then we can evaluate with controled error\nprint(infsum(lambda n: 1/(n**2), 'integral', max_terms=10**4, initial=1, eps=10**(-3), g=lambda n: 1/n))\n```\n\n```bash\n> (499, 1.64493406229104)\n```\n\n### Threshold (not guaranteed)\n```py\nfrom infsumpy import infsum\n\n# we can also use a stoping criterio such that sum until the n-th are less\n# than the epsilon, here for the infinity sum of 2/(2**n)\nprint(infsum(lambda n: n/(2**n), 'threshold', max_terms=10**4, initial=1, eps=2**(-52)))\n```\n\n```bash\n> (57, 2.0)\n```\n\n### Fixed (not guaranteed)\n```py\nfrom infsumpy import infsum\n\n# we can just sum a fixed number of terms of the infinite sum of 2/(2**n)\nprint(infsum(lambda n: n/(2**n), 'fixed', max_terms=10**4, initial=1))\n```\n\n```bash\n> (10000, 2.0)\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Approximate infinite sums with guaranteed error.",
"version": "1.0.3",
"project_urls": {
"Homepage": "https://github.com/wellington36/InfSumPy"
},
"split_keywords": [
"python",
" sum",
" series",
" infinite-series",
" approximation",
" guaranted-sum"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3808c901b6ad92dcdf47f9d2a9c806457436399791ebcf9e532cc2d7bff0a985",
"md5": "76de0044194f0ff254f02eefe8a8954e",
"sha256": "d15ebd60e7de275428428ee61dc47d971fe418e0d00dd14d38d6090ad2275bc9"
},
"downloads": -1,
"filename": "InfSumPy-1.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "76de0044194f0ff254f02eefe8a8954e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 15806,
"upload_time": "2024-11-21T14:59:35",
"upload_time_iso_8601": "2024-11-21T14:59:35.422402Z",
"url": "https://files.pythonhosted.org/packages/38/08/c901b6ad92dcdf47f9d2a9c806457436399791ebcf9e532cc2d7bff0a985/InfSumPy-1.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a061dd1d4fe8dceeb58ffd86c4e3ff31d850e180ebbfc28f4130302115057ea8",
"md5": "2b19b8d22e91b330bdf5473fe2669faa",
"sha256": "f633a88ab695db94dc48256b84ddaa1d43aa9f8513700dd8d2fdf6a5103045f1"
},
"downloads": -1,
"filename": "infsumpy-1.0.3.tar.gz",
"has_sig": false,
"md5_digest": "2b19b8d22e91b330bdf5473fe2669faa",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 16689,
"upload_time": "2024-11-21T14:59:40",
"upload_time_iso_8601": "2024-11-21T14:59:40.611657Z",
"url": "https://files.pythonhosted.org/packages/a0/61/dd1d4fe8dceeb58ffd86c4e3ff31d850e180ebbfc28f4130302115057ea8/infsumpy-1.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-21 14:59:40",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "wellington36",
"github_project": "InfSumPy",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "infsumpy"
}