A package for estimating the intrinsic dimensionality of a dataset. Supports multiple estimation methods including Correlation Dimension, Nearest Neighbor Dimension, Packing Numbers, Geodesic Minimum Spanning Tree, Eigenvalue Analysis, Maximum Likelihood Estimation, and the newly added idPettis method. The idPettis method provides an innovative approach for dimensionality estimation, enhancing the package’s utility and accuracy in analyzing complex datasets.
Raw data
{
"_id": null,
"home_page": "",
"name": "IntrinsicDimEstimator",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "intrinsic dimensionality,dimensionality estimation,data analysis,machine learning",
"author": "Eng. Alberto Biscalchin",
"author_email": "<biscalchin.mau.se@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/ee/52/b04453c7d4e5a0dd7478bd7ed6730b17c8996c4b4af9b67614823afc5a25/IntrinsicDimEstimator-0.3.2.tar.gz",
"platform": null,
"description": "A package for estimating the intrinsic dimensionality of a dataset. Supports multiple estimation methods including Correlation Dimension, Nearest Neighbor Dimension, Packing Numbers, Geodesic Minimum Spanning Tree, Eigenvalue Analysis, Maximum Likelihood Estimation, and the newly added idPettis method. The idPettis method provides an innovative approach for dimensionality estimation, enhancing the package\u2019s utility and accuracy in analyzing complex datasets.\r\n",
"bugtrack_url": null,
"license": "",
"summary": "Intrinsic Dimensionality Estimation with idPettis Method",
"version": "0.3.2",
"project_urls": null,
"split_keywords": [
"intrinsic dimensionality",
"dimensionality estimation",
"data analysis",
"machine learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "97f093c2105aad561e50db08d0b9db5c548e7d5738b912f01daf8902a3eeb1ed",
"md5": "85fbdc7ca3aea1d9d853ea406a9f0cfb",
"sha256": "6b90fad1e070e5e1380c536865a98d87573802073029965c0f0333857989538e"
},
"downloads": -1,
"filename": "IntrinsicDimEstimator-0.3.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "85fbdc7ca3aea1d9d853ea406a9f0cfb",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 19611,
"upload_time": "2024-02-15T00:22:11",
"upload_time_iso_8601": "2024-02-15T00:22:11.221055Z",
"url": "https://files.pythonhosted.org/packages/97/f0/93c2105aad561e50db08d0b9db5c548e7d5738b912f01daf8902a3eeb1ed/IntrinsicDimEstimator-0.3.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ee52b04453c7d4e5a0dd7478bd7ed6730b17c8996c4b4af9b67614823afc5a25",
"md5": "9d37adada92a45af63dddcf9cb02b19e",
"sha256": "156d8bd728ea4964d35307af6b713c1b395f721827e09880966f3b6772149bef"
},
"downloads": -1,
"filename": "IntrinsicDimEstimator-0.3.2.tar.gz",
"has_sig": false,
"md5_digest": "9d37adada92a45af63dddcf9cb02b19e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 21078,
"upload_time": "2024-02-15T00:22:13",
"upload_time_iso_8601": "2024-02-15T00:22:13.698156Z",
"url": "https://files.pythonhosted.org/packages/ee/52/b04453c7d4e5a0dd7478bd7ed6730b17c8996c4b4af9b67614823afc5a25/IntrinsicDimEstimator-0.3.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-15 00:22:13",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "intrinsicdimestimator"
}