JupyterChatbook


NameJupyterChatbook JSON
Version 0.0.16 PyPI version JSON
download
home_pagehttps://github.com/antononcube/Python-JupyterChatbook
SummaryCustom Jupyter magics for interacting with LLMs.
upload_time2023-10-20 17:51:17
maintainer
docs_urlNone
authorAnton Antonov
requires_python>=3.7
license
keywords llm llm prompt chat object chatbook magic magics jupyter notebook
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # JupyterChatbook

![PyPI](https://img.shields.io/pypi/v/JupyterChatbook?label=pypi%20JupyterChatbook)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/JupyterChatbook)](https://pypistats.org/packages/jupyterchatbook)

<!---
PePy:   
[![Downloads](https://static.pepy.tech/badge/JupyterChatbook)](https://pepy.tech/project/JupyterChatbook)
[![Downloads](https://static.pepy.tech/badge/JupyterChatbook/month)](https://pepy.tech/project/JupyterChatbook)
[![Downloads](https://static.pepy.tech/badge/JupyterChatbook/week)](https://pepy.tech/project/JupyterChatbook)
--->

"JupyterChatbook" is a Python package of a Jupyter extension that facilitates 
the interaction with Large Language Models (LLMs).

The Chatbook extension provides the cell magics:

- `%%chatgpt` (and the synonym `%%openai`)
- `%%palm`
- `%%dalle`
- `%%chat`
- `%%chat_meta`

The first three are for "shallow" access of the corresponding LLM services.
The 4th one is the most important -- allows contextual, multi-cell interactions with LLMs.
The last one is for managing the chat objects created in a notebook session.

**Remark:** The chatbook LLM cells use the packages 
["openai"](https://pypi.org/project/openai/), [OAIp2], 
and ["google-generativeai"](https://pypi.org/project/google-generativeai/), [GAIp1].

**Remark:** The results of the LLM cells are automatically copied to the clipboard
using the package ["pyperclip"](https://pypi.org/project/pyperclip/), [ASp1].

**Remark:** The API keys for the LLM cells can be specified in the magic lines. If not specified then the API keys are taken f
rom the Operating System (OS) environmental variables `OPENAI_API_KEY` and `PALM_API_KEY`. 
(See below the setup section for LLM services access.)

Here is a couple of movies [AAv2, AAv3] that provide quick introductions to the features:
- ["Jupyter Chatbook LLM cells demo (Python)"](https://youtu.be/WN3N-K_Xzz8), (4.8 min)
- ["Jupyter Chatbook multi cell LLM chats teaser (Python)"](https://www.youtube.com/watch?v=8pv0QRGc7Rw), (4.5 min)

--------

## Installation

### Install from GitHub

```shell
pip install -e git+https://github.com/antononcube/Python-JupyterChatbook.git#egg=Python-JupyterChatbook
```

### From PyPi

```shell
pip install JupyterChatbook
```

-------

## Setup LLM services access

The API keys for the LLM cells can be specified in the magic lines. If not specified then the API keys are taken f
rom the Operating System (OS) environmental variables`OPENAI_API_KEY` and `PALM_API_KEY`. 
(For example, set in the "~/.zshrc" file in macOS.)

One way to set those environmental variables in a notebook session is to use the `%env` line magic. For example:

```
%env OPENAI_API_KEY = <YOUR API KEY>
```

Another way is to use Python code. For example:

```
import os
os.environ['PALM_API_KEY'] = '<YOUR PALM API KEY>'
os.environ['OPEN_API_KEY'] = '<YOUR OPEN API KEY>'
```

-------

## Demonstration notebooks (chatbooks)

| Notebook                          | Description                                                                                 |
|-----------------------------------|---------------------------------------------------------------------------------------------|
| [Chatbooks-cells-demo.ipynb](https://github.com/antononcube/Python-JupyterChatbook/blob/main/docs/Chatbook-cells-demo.ipynb) | How to do [multi-cell (notebook-wide) chats](https://www.youtube.com/watch?v=8pv0QRGc7Rw)?  |
| [Chatbook-LLM-cells.ipynb](https://github.com/antononcube/Python-JupyterChatbook/blob/main/docs/Chatbook-LLM-cells.ipynb) | How to "directly message" LLMs services?                                                    |
| [DALL-E-cells-demo.ipynb](https://github.com/antononcube/Python-JupyterChatbook/blob/main/docs/DALL-E-cells-demo.ipynb)   | How to generate images with [DALL-E](https://openai.com/dall-e-2)?                          |
| [Echoed-chats.ipynb](https://github.com/antononcube/Python-JupyterChatbook/blob/main/docs/Echoed-chats.ipynb)             | How to see the LLM interaction execution steps?                                             |


-------

## Notebook-wide chats

Chatbooks have the ability to maintain LLM conversations over multiple notebook cells.
A chatbook can have more than one LLM conversations.
"Under the hood" each chatbook maintains a database of chat objects.
Chat cells are used to give messages to those chat objects.

For example, here is a chat cell with which a new 
["Email writer"](https://developers.generativeai.google/prompts/email-writer) 
chat object is made, and that new chat object has the identifier "em12":  

```
%%chat --chat_id em12, --prompt "Given a topic, write emails in a concise, professional manner"
Write a vacation email.
```

Here is a chat cell in which another message is given to the chat object with identifier "em12":

```
%%chat --chat_id em12
Rewrite with manager's name being Jane Doe, and start- and end dates being 8/20 and 9/5.
```

In this chat cell a new chat object is created:

```
%%chat -i snowman, --prompt "Pretend you are a friendly snowman. Stay in character for every response you give me. Keep your responses short."
Hi!
```

And here is a chat cell that sends another message to the "snowman" chat object:

```
%%chat -i snowman
Who build you? Where?
```

**Remark:** Specifying a chat object identifier is not required. I.e. only the magic spec `%%chat` can be used.
The "default" chat object ID identifier is "NONE".

For more examples see the notebook 
["Chatbook-cells-demo.ipynb"](https://github.com/antononcube/Python-JupyterChatbook/blob/main/docs/Chatbook-cells-demo.ipynb).

Here is a flowchart that summarizes the way chatbooks create and utilize LLM chat objects:

```mermaid
flowchart LR
    OpenAI{{OpenAI}}
    PaLM{{PaLM}}
    LLMFunc[[LLMFunctions]]
    LLMProm[[LLMPrompts]]
    CODB[(Chat objects)]
    PDB[(Prompts)]
    CCell[/Chat cell/]
    CRCell[/Chat result cell/]
    CIDQ{Chat ID<br/>specified?}
    CIDEQ{Chat ID<br/>exists in DB?}
    RECO[Retrieve existing<br/>chat object]
    COEval[Message<br/>evaluation]
    PromParse[Prompt<br/>DSL spec parsing]
    KPFQ{Known<br/>prompts<br/>found?}
    PromExp[Prompt<br/>expansion]
    CNCO[Create new<br/>chat object]
    CIDNone["Assume chat ID<br/>is 'NONE'"] 
    subgraph Chatbook frontend    
        CCell
        CRCell
    end
    subgraph Chatbook backend
        CIDQ
        CIDEQ
        CIDNone
        RECO
        CNCO
        CODB
    end
    subgraph Prompt processing
        PDB
        LLMProm
        PromParse
        KPFQ
        PromExp 
    end
    subgraph LLM interaction
      COEval
      LLMFunc
      PaLM
      OpenAI
    end
    CCell --> CIDQ
    CIDQ --> |yes| CIDEQ
    CIDEQ --> |yes| RECO
    RECO --> PromParse
    COEval --> CRCell
    CIDEQ -.- CODB
    CIDEQ --> |no| CNCO
    LLMFunc -.- CNCO -.- CODB
    CNCO --> PromParse --> KPFQ
    KPFQ --> |yes| PromExp
    KPFQ --> |no| COEval
    PromParse -.- LLMProm 
    PromExp -.- LLMProm
    PromExp --> COEval 
    LLMProm -.- PDB
    CIDQ --> |no| CIDNone
    CIDNone --> CIDEQ
    COEval -.- LLMFunc
    LLMFunc <-.-> OpenAI
    LLMFunc <-.-> PaLM
```

------

## Chat meta cells

Each chatbook session has a dictionary of chat objects.
Chatbooks can have chat meta cells that allow the access of the chat object "database" as whole, 
or its individual objects.  

Here is an example of a chat meta cell (that applies the method `print` to the chat object with ID "snowman"):

```
%%chat_meta -i snowman 
print
```

Here is an example of chat meta cell that creates a new chat chat object with the LLM prompt
specified in the cell
(["Guess the word"](https://developers.generativeai.google/prompts/guess-the-word)):

```
%%chat_meta -i WordGuesser --prompt
We're playing a game. I'm thinking of a word, and I need to get you to guess that word. 
But I can't say the word itself. 
I'll give you clues, and you'll respond with a guess. 
Your guess should be a single word only.
```

Here is another chat object creation cell using a prompt from the package
["LLMPrompts"](https://pypi.org/project/LLMPrompts), [AAp2]:

```
%%chat_meta -i yoda1 --prompt
@Yoda
```

Here is a table with examples of magic specs for chat meta cells and their interpretation:

| cell magic line            | cell content                         | interpretation                                                  |
|:---------------------------|:-------------------------------------|:----------------------------------------------------------------|
| chat_meta -i ew12          | print                                | Give the "print out" of the chat object with ID "ew12"          |   
| chat_meta --chat_id ew12   | messages                             | Give the messages of the chat object with ID "ew12"             |   
| chat_meta -i sn22 --prompt | You pretend to be a melting snowman. | Create a chat object with ID "sn22" with the prompt in the cell |   
| chat_meta --all            | keys                                 | Show the keys of the session chat objects DB                    |   
| chat_meta --all            | print                                | Print the `repr` forms of the session chat objects              |   

Here is a flowchart that summarizes the chat meta cell processing:

```mermaid
flowchart LR
    LLMFunc[[LLMFunctionObjects]]
    CODB[(Chat objects)]
    CCell[/Chat meta cell/]
    CRCell[/Chat meta cell result/]
    CIDQ{Chat ID<br/>specified?}
    KCOMQ{Known<br/>chat object<br/>method?}
    AKWQ{Option '--all'<br/>specified?} 
    KCODBMQ{Known<br/>chat objects<br/>DB method?}
    CIDEQ{Chat ID<br/>exists in DB?}
    RECO[Retrieve existing<br/>chat object]
    COEval[Chat object<br/>method<br/>invocation]
    CODBEval[Chat objects DB<br/>method<br/>invocation]
    CNCO[Create new<br/>chat object]
    CIDNone["Assume chat ID<br/>is 'NONE'"] 
    NoCOM[/Cannot find<br/>chat object<br/>message/]
    CntCmd[/Cannot interpret<br/>command<br/>message/]
    subgraph Chatbook
        CCell
        NoCOM
        CntCmd
        CRCell
    end
    CCell --> CIDQ
    CIDQ --> |yes| CIDEQ  
    CIDEQ --> |yes| RECO
    RECO --> KCOMQ
    KCOMQ --> |yes| COEval --> CRCell
    KCOMQ --> |no| CntCmd
    CIDEQ -.- CODB
    CIDEQ --> |no| NoCOM
    LLMFunc -.- CNCO -.- CODB
    CNCO --> COEval
    CIDQ --> |no| AKWQ
    AKWQ --> |yes| KCODBMQ
    KCODBMQ --> |yes| CODBEval
    KCODBMQ --> |no| CntCmd
    CODBEval -.- CODB
    CODBEval --> CRCell
    AKWQ --> |no| CIDNone
    CIDNone --> CIDEQ
    COEval -.- LLMFunc
```

-------

## DALL-E access

***See the notebook ["DALL-E-cells-demo.ipynb"](https://github.com/antononcube/Python-JupyterChatbook/blob/main/docs/DALL-E-cells-demo.ipynb)***

Here is a screenshot:

![](https://raw.githubusercontent.com/antononcube/Python-JupyterChatbook/main/docs/img/Python-JupyterChatbok-teaser-raccoons.png)

-------

## Implementation details

The design of this package -- and corresponding envisioned workflows with it -- follow those of
the Raku package ["Jupyter::Chatbook"](https://github.com/antononcube/Raku-Jupyter-Chatbook), [AAp3].

-------

## TODO

- [ ] TODO Implementation
  - [X] DONE PalM chat cell
  - [ ] TODO Using ["pyperclip"](https://pypi.org/project/pyperclip/)
    - [X] DONE Basic
      - [X] `%%chatgpt`
      - [X] `%%dalle`
      - [X] `%%palm`
      - [X] `%%chat`
    - [ ] TODO Switching on/off copying to the clipboard
      - [X] DONE Per cell 
        - Controlled with the argument `--no_clipboard`.
      - [ ] TODO Global 
        - Can be done via the chat meta cell, but maybe a more elegant, bureaucratic solution exists.
  - [X] DONE Formatted output: asis, html, markdown
      - General [lexer code](https://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.Code)?
        - Includes LaTeX.
      - [X] `%%chatgpt`
      - [X] `%%palm`
      - [X] `%%chat`
      - [ ] `%%chat_meta`?
  - [X] DONE DALL-E image variations cell
    - Combined image variations and edits with `%%dalle`.
  - [ ] TODO Mermaid-JS cell
  - [ ] TODO ProdGDT cell
  - [ ] MAYBE DeepL cell
    - See ["deepl-python"](https://github.com/DeepLcom/deepl-python)
  - [ ] TODO Lower level access to chat objects.
    - Like:
      - Getting the 3rd message
      - Removing messages after 2 second one
      - etc.
  - [ ] TODO Using LLM commands to manipulate chat objects
    - Like:
      - "Remove the messages after the second for chat profSynapse3."
      - "Show the third messages of each chat object." 
- [ ] TODO Documentation
  - [X] DONE Multi-cell LLM chats movie (teaser)
    - See [AAv2].
  - [ ] TODO LLM service cells movie (short)
  - [ ] TODO Multi-cell LLM chats movie (comprehensive)
  - [ ] TODO Code generation 

-------

## References

### Packages

[AAp1] Anton Antonov,
[LLMFunctionObjects Python package](https://github.com/antononcube/Python-packages/tree/main/LLMFunctionObjects),
(2023),
[Python-packages at GitHub/antononcube](https://github.com/antononcube/Python-packages).

[AAp2] Anton Antonov,
[LLMPrompts Python package](https://github.com/antononcube/Python-packages/tree/main/LLMPrompts),
(2023),
[Python-packages at GitHub/antononcube](https://github.com/antononcube/Python-packages).

[AAp3] Anton Antonov,
[Jupyter::Chatbook Raku package](https://github.com/antononcube/Raku-Jupyter-Chatbook),
(2023),
[GitHub/antononcube](https://github.com/antononcube).

[ASp1] Al Sweigart, 
[pyperclip (Python package)](https://pypi.org/project/pyperclip/),
(2013-2021),
[PyPI.org/AlSweigart](https://pypi.org/user/AlSweigart/).

[GAIp1] Google AI,
[google-generativeai (Google Generative AI Python Client)](https://pypi.org/project/google-generativeai/),
(2023),
[PyPI.org/google-ai](https://pypi.org/user/google-ai/).

[OAIp1] OpenAI, 
[openai (OpenAI Python Library)](https://pypi.org/project/openai/),
(2020-2023),
[PyPI.org](https://pypi.org/).

### Videos

[AAv1] Anton Antonov,
["Jupyter Chatbook multi cell LLM chats teaser (Raku)"](https://www.youtube.com/watch?v=wNpIGUAwZB8),
(2023),
[YouTube/@AAA4Prediction](https://www.youtube.com/@AAA4prediction).

[AAv2] Anton Antonov,
["Jupyter Chatbook LLM cells demo (Python)"](https://youtu.be/WN3N-K_Xzz8),
(2023),
[YouTube/@AAA4Prediction](https://www.youtube.com/@AAA4prediction).

[AAv3] Anton Antonov,
["Jupyter Chatbook multi cell LLM chats teaser (Python)"](https://www.youtube.com/watch?v=8pv0QRGc7Rw),
(2023),
[YouTube/@AAA4Prediction](https://www.youtube.com/@AAA4prediction).


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/antononcube/Python-JupyterChatbook",
    "name": "JupyterChatbook",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "llm,llm prompt,chat object,chatbook,magic,magics,jupyter,notebook",
    "author": "Anton Antonov",
    "author_email": "antononcube@posteo.net",
    "download_url": "https://files.pythonhosted.org/packages/d8/c9/b9d44b471b66ec973309437c323520ca562c194e0d1c660ba94c5703d199/JupyterChatbook-0.0.16.tar.gz",
    "platform": null,
    "description": "# JupyterChatbook\n\n![PyPI](https://img.shields.io/pypi/v/JupyterChatbook?label=pypi%20JupyterChatbook)\n[![PyPI - Downloads](https://img.shields.io/pypi/dm/JupyterChatbook)](https://pypistats.org/packages/jupyterchatbook)\n\n<!---\nPePy:   \n[![Downloads](https://static.pepy.tech/badge/JupyterChatbook)](https://pepy.tech/project/JupyterChatbook)\n[![Downloads](https://static.pepy.tech/badge/JupyterChatbook/month)](https://pepy.tech/project/JupyterChatbook)\n[![Downloads](https://static.pepy.tech/badge/JupyterChatbook/week)](https://pepy.tech/project/JupyterChatbook)\n--->\n\n\"JupyterChatbook\" is a Python package of a Jupyter extension that facilitates \nthe interaction with Large Language Models (LLMs).\n\nThe Chatbook extension provides the cell magics:\n\n- `%%chatgpt` (and the synonym `%%openai`)\n- `%%palm`\n- `%%dalle`\n- `%%chat`\n- `%%chat_meta`\n\nThe first three are for \"shallow\" access of the corresponding LLM services.\nThe 4th one is the most important -- allows contextual, multi-cell interactions with LLMs.\nThe last one is for managing the chat objects created in a notebook session.\n\n**Remark:** The chatbook LLM cells use the packages \n[\"openai\"](https://pypi.org/project/openai/), [OAIp2], \nand [\"google-generativeai\"](https://pypi.org/project/google-generativeai/), [GAIp1].\n\n**Remark:** The results of the LLM cells are automatically copied to the clipboard\nusing the package [\"pyperclip\"](https://pypi.org/project/pyperclip/), [ASp1].\n\n**Remark:** The API keys for the LLM cells can be specified in the magic lines. If not specified then the API keys are taken f\nrom the Operating System (OS) environmental variables `OPENAI_API_KEY` and `PALM_API_KEY`. \n(See below the setup section for LLM services access.)\n\nHere is a couple of movies [AAv2, AAv3] that provide quick introductions to the features:\n- [\"Jupyter Chatbook LLM cells demo (Python)\"](https://youtu.be/WN3N-K_Xzz8), (4.8 min)\n- [\"Jupyter Chatbook multi cell LLM chats teaser (Python)\"](https://www.youtube.com/watch?v=8pv0QRGc7Rw), (4.5 min)\n\n--------\n\n## Installation\n\n### Install from GitHub\n\n```shell\npip install -e git+https://github.com/antononcube/Python-JupyterChatbook.git#egg=Python-JupyterChatbook\n```\n\n### From PyPi\n\n```shell\npip install JupyterChatbook\n```\n\n-------\n\n## Setup LLM services access\n\nThe API keys for the LLM cells can be specified in the magic lines. If not specified then the API keys are taken f\nrom the Operating System (OS) environmental variables`OPENAI_API_KEY` and `PALM_API_KEY`. \n(For example, set in the \"~/.zshrc\" file in macOS.)\n\nOne way to set those environmental variables in a notebook session is to use the `%env` line magic. For example:\n\n```\n%env OPENAI_API_KEY = <YOUR API KEY>\n```\n\nAnother way is to use Python code. For example:\n\n```\nimport os\nos.environ['PALM_API_KEY'] = '<YOUR PALM API KEY>'\nos.environ['OPEN_API_KEY'] = '<YOUR OPEN API KEY>'\n```\n\n-------\n\n## Demonstration notebooks (chatbooks)\n\n| Notebook                          | Description                                                                                 |\n|-----------------------------------|---------------------------------------------------------------------------------------------|\n| [Chatbooks-cells-demo.ipynb](https://github.com/antononcube/Python-JupyterChatbook/blob/main/docs/Chatbook-cells-demo.ipynb) | How to do [multi-cell (notebook-wide) chats](https://www.youtube.com/watch?v=8pv0QRGc7Rw)?  |\n| [Chatbook-LLM-cells.ipynb](https://github.com/antononcube/Python-JupyterChatbook/blob/main/docs/Chatbook-LLM-cells.ipynb) | How to \"directly message\" LLMs services?                                                    |\n| [DALL-E-cells-demo.ipynb](https://github.com/antononcube/Python-JupyterChatbook/blob/main/docs/DALL-E-cells-demo.ipynb)   | How to generate images with [DALL-E](https://openai.com/dall-e-2)?                          |\n| [Echoed-chats.ipynb](https://github.com/antononcube/Python-JupyterChatbook/blob/main/docs/Echoed-chats.ipynb)             | How to see the LLM interaction execution steps?                                             |\n\n\n-------\n\n## Notebook-wide chats\n\nChatbooks have the ability to maintain LLM conversations over multiple notebook cells.\nA chatbook can have more than one LLM conversations.\n\"Under the hood\" each chatbook maintains a database of chat objects.\nChat cells are used to give messages to those chat objects.\n\nFor example, here is a chat cell with which a new \n[\"Email writer\"](https://developers.generativeai.google/prompts/email-writer) \nchat object is made, and that new chat object has the identifier \"em12\":  \n\n```\n%%chat --chat_id em12, --prompt \"Given a topic, write emails in a concise, professional manner\"\nWrite a vacation email.\n```\n\nHere is a chat cell in which another message is given to the chat object with identifier \"em12\":\n\n```\n%%chat --chat_id em12\nRewrite with manager's name being Jane Doe, and start- and end dates being 8/20 and 9/5.\n```\n\nIn this chat cell a new chat object is created:\n\n```\n%%chat -i snowman, --prompt \"Pretend you are a friendly snowman. Stay in character for every response you give me. Keep your responses short.\"\nHi!\n```\n\nAnd here is a chat cell that sends another message to the \"snowman\" chat object:\n\n```\n%%chat -i snowman\nWho build you? Where?\n```\n\n**Remark:** Specifying a chat object identifier is not required. I.e. only the magic spec `%%chat` can be used.\nThe \"default\" chat object ID identifier is \"NONE\".\n\nFor more examples see the notebook \n[\"Chatbook-cells-demo.ipynb\"](https://github.com/antononcube/Python-JupyterChatbook/blob/main/docs/Chatbook-cells-demo.ipynb).\n\nHere is a flowchart that summarizes the way chatbooks create and utilize LLM chat objects:\n\n```mermaid\nflowchart LR\n    OpenAI{{OpenAI}}\n    PaLM{{PaLM}}\n    LLMFunc[[LLMFunctions]]\n    LLMProm[[LLMPrompts]]\n    CODB[(Chat objects)]\n    PDB[(Prompts)]\n    CCell[/Chat cell/]\n    CRCell[/Chat result cell/]\n    CIDQ{Chat ID<br/>specified?}\n    CIDEQ{Chat ID<br/>exists in DB?}\n    RECO[Retrieve existing<br/>chat object]\n    COEval[Message<br/>evaluation]\n    PromParse[Prompt<br/>DSL spec parsing]\n    KPFQ{Known<br/>prompts<br/>found?}\n    PromExp[Prompt<br/>expansion]\n    CNCO[Create new<br/>chat object]\n    CIDNone[\"Assume chat ID<br/>is 'NONE'\"] \n    subgraph Chatbook frontend    \n        CCell\n        CRCell\n    end\n    subgraph Chatbook backend\n        CIDQ\n        CIDEQ\n        CIDNone\n        RECO\n        CNCO\n        CODB\n    end\n    subgraph Prompt processing\n        PDB\n        LLMProm\n        PromParse\n        KPFQ\n        PromExp \n    end\n    subgraph LLM interaction\n      COEval\n      LLMFunc\n      PaLM\n      OpenAI\n    end\n    CCell --> CIDQ\n    CIDQ --> |yes| CIDEQ\n    CIDEQ --> |yes| RECO\n    RECO --> PromParse\n    COEval --> CRCell\n    CIDEQ -.- CODB\n    CIDEQ --> |no| CNCO\n    LLMFunc -.- CNCO -.- CODB\n    CNCO --> PromParse --> KPFQ\n    KPFQ --> |yes| PromExp\n    KPFQ --> |no| COEval\n    PromParse -.- LLMProm \n    PromExp -.- LLMProm\n    PromExp --> COEval \n    LLMProm -.- PDB\n    CIDQ --> |no| CIDNone\n    CIDNone --> CIDEQ\n    COEval -.- LLMFunc\n    LLMFunc <-.-> OpenAI\n    LLMFunc <-.-> PaLM\n```\n\n------\n\n## Chat meta cells\n\nEach chatbook session has a dictionary of chat objects.\nChatbooks can have chat meta cells that allow the access of the chat object \"database\" as whole, \nor its individual objects.  \n\nHere is an example of a chat meta cell (that applies the method `print` to the chat object with ID \"snowman\"):\n\n```\n%%chat_meta -i snowman \nprint\n```\n\nHere is an example of chat meta cell that creates a new chat chat object with the LLM prompt\nspecified in the cell\n([\"Guess the word\"](https://developers.generativeai.google/prompts/guess-the-word)):\n\n```\n%%chat_meta -i WordGuesser --prompt\nWe're playing a game. I'm thinking of a word, and I need to get you to guess that word. \nBut I can't say the word itself. \nI'll give you clues, and you'll respond with a guess. \nYour guess should be a single word only.\n```\n\nHere is another chat object creation cell using a prompt from the package\n[\"LLMPrompts\"](https://pypi.org/project/LLMPrompts), [AAp2]:\n\n```\n%%chat_meta -i yoda1 --prompt\n@Yoda\n```\n\nHere is a table with examples of magic specs for chat meta cells and their interpretation:\n\n| cell magic line            | cell content                         | interpretation                                                  |\n|:---------------------------|:-------------------------------------|:----------------------------------------------------------------|\n| chat_meta -i ew12          | print                                | Give the \"print out\" of the chat object with ID \"ew12\"          |   \n| chat_meta --chat_id ew12   | messages                             | Give the messages of the chat object with ID \"ew12\"             |   \n| chat_meta -i sn22 --prompt | You pretend to be a melting snowman. | Create a chat object with ID \"sn22\" with the prompt in the cell |   \n| chat_meta --all            | keys                                 | Show the keys of the session chat objects DB                    |   \n| chat_meta --all            | print                                | Print the `repr` forms of the session chat objects              |   \n\nHere is a flowchart that summarizes the chat meta cell processing:\n\n```mermaid\nflowchart LR\n    LLMFunc[[LLMFunctionObjects]]\n    CODB[(Chat objects)]\n    CCell[/Chat meta cell/]\n    CRCell[/Chat meta cell result/]\n    CIDQ{Chat ID<br/>specified?}\n    KCOMQ{Known<br/>chat object<br/>method?}\n    AKWQ{Option '--all'<br/>specified?} \n    KCODBMQ{Known<br/>chat objects<br/>DB method?}\n    CIDEQ{Chat ID<br/>exists in DB?}\n    RECO[Retrieve existing<br/>chat object]\n    COEval[Chat object<br/>method<br/>invocation]\n    CODBEval[Chat objects DB<br/>method<br/>invocation]\n    CNCO[Create new<br/>chat object]\n    CIDNone[\"Assume chat ID<br/>is 'NONE'\"] \n    NoCOM[/Cannot find<br/>chat object<br/>message/]\n    CntCmd[/Cannot interpret<br/>command<br/>message/]\n    subgraph Chatbook\n        CCell\n        NoCOM\n        CntCmd\n        CRCell\n    end\n    CCell --> CIDQ\n    CIDQ --> |yes| CIDEQ  \n    CIDEQ --> |yes| RECO\n    RECO --> KCOMQ\n    KCOMQ --> |yes| COEval --> CRCell\n    KCOMQ --> |no| CntCmd\n    CIDEQ -.- CODB\n    CIDEQ --> |no| NoCOM\n    LLMFunc -.- CNCO -.- CODB\n    CNCO --> COEval\n    CIDQ --> |no| AKWQ\n    AKWQ --> |yes| KCODBMQ\n    KCODBMQ --> |yes| CODBEval\n    KCODBMQ --> |no| CntCmd\n    CODBEval -.- CODB\n    CODBEval --> CRCell\n    AKWQ --> |no| CIDNone\n    CIDNone --> CIDEQ\n    COEval -.- LLMFunc\n```\n\n-------\n\n## DALL-E access\n\n***See the notebook [\"DALL-E-cells-demo.ipynb\"](https://github.com/antononcube/Python-JupyterChatbook/blob/main/docs/DALL-E-cells-demo.ipynb)***\n\nHere is a screenshot:\n\n![](https://raw.githubusercontent.com/antononcube/Python-JupyterChatbook/main/docs/img/Python-JupyterChatbok-teaser-raccoons.png)\n\n-------\n\n## Implementation details\n\nThe design of this package -- and corresponding envisioned workflows with it -- follow those of\nthe Raku package [\"Jupyter::Chatbook\"](https://github.com/antononcube/Raku-Jupyter-Chatbook), [AAp3].\n\n-------\n\n## TODO\n\n- [ ] TODO Implementation\n  - [X] DONE PalM chat cell\n  - [ ] TODO Using [\"pyperclip\"](https://pypi.org/project/pyperclip/)\n    - [X] DONE Basic\n      - [X] `%%chatgpt`\n      - [X] `%%dalle`\n      - [X] `%%palm`\n      - [X] `%%chat`\n    - [ ] TODO Switching on/off copying to the clipboard\n      - [X] DONE Per cell \n        - Controlled with the argument `--no_clipboard`.\n      - [ ] TODO Global \n        - Can be done via the chat meta cell, but maybe a more elegant, bureaucratic solution exists.\n  - [X] DONE Formatted output: asis, html, markdown\n      - General [lexer code](https://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.Code)?\n        - Includes LaTeX.\n      - [X] `%%chatgpt`\n      - [X] `%%palm`\n      - [X] `%%chat`\n      - [ ] `%%chat_meta`?\n  - [X] DONE DALL-E image variations cell\n    - Combined image variations and edits with `%%dalle`.\n  - [ ] TODO Mermaid-JS cell\n  - [ ] TODO ProdGDT cell\n  - [ ] MAYBE DeepL cell\n    - See [\"deepl-python\"](https://github.com/DeepLcom/deepl-python)\n  - [ ] TODO Lower level access to chat objects.\n    - Like:\n      - Getting the 3rd message\n      - Removing messages after 2 second one\n      - etc.\n  - [ ] TODO Using LLM commands to manipulate chat objects\n    - Like:\n      - \"Remove the messages after the second for chat profSynapse3.\"\n      - \"Show the third messages of each chat object.\" \n- [ ] TODO Documentation\n  - [X] DONE Multi-cell LLM chats movie (teaser)\n    - See [AAv2].\n  - [ ] TODO LLM service cells movie (short)\n  - [ ] TODO Multi-cell LLM chats movie (comprehensive)\n  - [ ] TODO Code generation \n\n-------\n\n## References\n\n### Packages\n\n[AAp1] Anton Antonov,\n[LLMFunctionObjects Python package](https://github.com/antononcube/Python-packages/tree/main/LLMFunctionObjects),\n(2023),\n[Python-packages at GitHub/antononcube](https://github.com/antononcube/Python-packages).\n\n[AAp2] Anton Antonov,\n[LLMPrompts Python package](https://github.com/antononcube/Python-packages/tree/main/LLMPrompts),\n(2023),\n[Python-packages at GitHub/antononcube](https://github.com/antononcube/Python-packages).\n\n[AAp3] Anton Antonov,\n[Jupyter::Chatbook Raku package](https://github.com/antononcube/Raku-Jupyter-Chatbook),\n(2023),\n[GitHub/antononcube](https://github.com/antononcube).\n\n[ASp1] Al Sweigart, \n[pyperclip (Python package)](https://pypi.org/project/pyperclip/),\n(2013-2021),\n[PyPI.org/AlSweigart](https://pypi.org/user/AlSweigart/).\n\n[GAIp1] Google AI,\n[google-generativeai (Google Generative AI Python Client)](https://pypi.org/project/google-generativeai/),\n(2023),\n[PyPI.org/google-ai](https://pypi.org/user/google-ai/).\n\n[OAIp1] OpenAI, \n[openai (OpenAI Python Library)](https://pypi.org/project/openai/),\n(2020-2023),\n[PyPI.org](https://pypi.org/).\n\n### Videos\n\n[AAv1] Anton Antonov,\n[\"Jupyter Chatbook multi cell LLM chats teaser (Raku)\"](https://www.youtube.com/watch?v=wNpIGUAwZB8),\n(2023),\n[YouTube/@AAA4Prediction](https://www.youtube.com/@AAA4prediction).\n\n[AAv2] Anton Antonov,\n[\"Jupyter Chatbook LLM cells demo (Python)\"](https://youtu.be/WN3N-K_Xzz8),\n(2023),\n[YouTube/@AAA4Prediction](https://www.youtube.com/@AAA4prediction).\n\n[AAv3] Anton Antonov,\n[\"Jupyter Chatbook multi cell LLM chats teaser (Python)\"](https://www.youtube.com/watch?v=8pv0QRGc7Rw),\n(2023),\n[YouTube/@AAA4Prediction](https://www.youtube.com/@AAA4prediction).\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Custom Jupyter magics for interacting with LLMs.",
    "version": "0.0.16",
    "project_urls": {
        "Homepage": "https://github.com/antononcube/Python-JupyterChatbook"
    },
    "split_keywords": [
        "llm",
        "llm prompt",
        "chat object",
        "chatbook",
        "magic",
        "magics",
        "jupyter",
        "notebook"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d35be94f42ccd1a9a62e1b6b7b92ae4eb23af8fe4f040cb359d8bc69167f0101",
                "md5": "e4f76a3335e40f263bfbce337c7b00b7",
                "sha256": "c6ae19ba1fc37836860f62dea4cae02afb3c8899e2d2fa6fa4fd9bebb4b03c32"
            },
            "downloads": -1,
            "filename": "JupyterChatbook-0.0.16-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e4f76a3335e40f263bfbce337c7b00b7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 11433,
            "upload_time": "2023-10-20T17:51:15",
            "upload_time_iso_8601": "2023-10-20T17:51:15.502907Z",
            "url": "https://files.pythonhosted.org/packages/d3/5b/e94f42ccd1a9a62e1b6b7b92ae4eb23af8fe4f040cb359d8bc69167f0101/JupyterChatbook-0.0.16-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d8c9b9d44b471b66ec973309437c323520ca562c194e0d1c660ba94c5703d199",
                "md5": "247ed8517c14480071b35caa10eff32f",
                "sha256": "1e219d1e902c70ca466c8828890a57f732747e4426abae73c208f91573218ffb"
            },
            "downloads": -1,
            "filename": "JupyterChatbook-0.0.16.tar.gz",
            "has_sig": false,
            "md5_digest": "247ed8517c14480071b35caa10eff32f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 11396,
            "upload_time": "2023-10-20T17:51:17",
            "upload_time_iso_8601": "2023-10-20T17:51:17.049122Z",
            "url": "https://files.pythonhosted.org/packages/d8/c9/b9d44b471b66ec973309437c323520ca562c194e0d1c660ba94c5703d199/JupyterChatbook-0.0.16.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-20 17:51:17",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "antononcube",
    "github_project": "Python-JupyterChatbook",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "jupyterchatbook"
}
        
Elapsed time: 1.20194s