LevDoom


NameLevDoom JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/thu-ml/tianshou
SummaryLevDoom: A Generalization Benchmark for Deep Reinforcement Learning
upload_time2024-02-02 14:52:14
maintainer
docs_urlNone
authorTristan Tomilin
requires_python>=3.8
licenseMIT
keywords vizdoom reinforcement learning benchmarking generalization
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LevDoom
LevDoom is a benchmark with difficulty levels based on visual modifications, intended for research 
in generalization of deep reinforcement learning agents. The benchmark is based upon 
[ViZDoom](https://github.com/Farama-Foundation/ViZDoom), a platform addressed to pixel based learning in the 
FPS game domain.

For more details please refer to our [CoG2022](https://ieee-cog.org/2022/assets/papers/paper_30.pdf) paper.
To reproduce the paper results, follow the instructions in the [RL](rl/README.md) module.

![Default](assets/gifs/scenarios.gif)

## Installation
To install LevDoom from PyPi, just run:
```bash
$ pip install LevDoom
```
Alternatively, to install LevDoom from source, clone this repo, cd to it, and then:
1. Clone the repository
```bash
$ git clone https://github.com/TTomilin/LevDoom
```
2. Navigate into the repository
```bash
$ cd LevDoom
```
3. Install the dependencies 
```bash 
$ pip install .
```
## Environments
The benchmark consists of 4 scenarios, each with 5 levels of increasing difficulty.
The full list of environments can be found in the [LevDoom](levdoom/README.md) module.

| Scenario          | Success Metric | Enemies | Weapon  | Items   | Max Steps | Actions | Stochasticity                   | 
|-------------------|----------------|---------|---------|---------|-----------|---------|---------------------------------|
| Defend the Center | Frames Alive   | ✓ | ✓ | ✗ | 2100      | 6       | Enemy behaviour                 | 
| Health Gathering  | Frames Alive   | ✗ | ✗ | ✓ | 2100      | 6       | Health kit spawn locations      |
| Seek and Slay     | Kill Count     | ✓ | ✓ | ✗ | 1250      | 12      | Enemy and agent spawn locations |
| Dodge Projectiles | Frames Alive   | ✓ | ✗ | ✗ | 2100      | 6       | Enemy behaviour                 |


### Environment Modifications
LevDoom imposes generalization difficulty by modifying the base environment of a scenario.
Each modification increases the difficulty level of the generalization task. 
There are 8 types of modifications across all scenarios.

| Modification     | Description                                                              |
|------------------|--------------------------------------------------------------------------|
| Textures         | Varies the appearance of the walls, ceilings and floors                  |
| Obstacles        | Adds impassable obstructions to the map that impede the agent's movement |
| Entity Size      | Changes the size of enemies and obtainable items                         |
| Entity Type      | Changes the type of enemies and obtainable items                         |
| Entity Rendering | Varies the rendering type of enemies and obtainable items                |
| Entity Speed     | Increases the speed of enemies                                           |
| Agent Height     | Vertically shifts the view point of the agent                            |


### Difficulty Levels
The number of combined modifications determines the difficulty level.

| Scenario          | Level 0                                                        | Level 1                                                                 | Level 2                                                                                              | Level 3                                                                                                                  | Level 4                                                          |
|-------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Defend the Center | ![Default](assets/images/defend_the_center/Level0_Default.png) | ![Gore](assets/images/defend_the_center/Level1_Gore.png)                | ![Stone Wall + Flying Enemies](assets/images/defend_the_center/Level2_Stone_Wall_Flying_Enemies.png) | ![Resized Flying Enemies + Mossy Bricks](assets/images/defend_the_center/Level3_Resized_Flying_Enemies_Mossy_Bricks.png) | ![Complete](assets/images/defend_the_center/Level4_Complete.png) |
| Health Gathering  | ![Default](assets/images/health_gathering/Level0_Default.png)  | ![Resized Kits](assets/images/health_gathering/Level1_Resized_Kits.png) | ![Stone Wall + Flying Enemies](assets/images/health_gathering/Level2_Slime_Obstacles.png)            | ![Lava + Supreme + Resized Agent](assets/images/health_gathering/Level3_Lava_Supreme_Resized_Agent.png)                  | ![Complete](assets/images/health_gathering/Level4_Complete.png)  |
| Seek and Slay     | ![Default](assets/images/seek_and_slay/Level0_Default.png)     | ![Shadows](assets/images/seek_and_slay/Level1_Shadows.png)              | ![Obstacles + Resized Enemies](assets/images/seek_and_slay/Level2_Obstacles_Resized_Enemies.png)     | ![Red + Obstacles + Invulnerable](assets/images/seek_and_slay/Level3_Red_Obstacles_Invulnerable.png)                     | ![Complete](assets/images/seek_and_slay/Level4_Complete.png)     |
| Dodge Projectiles | ![Default](assets/images/dodge_projectiles/Level0_Default.png) | ![Barons](assets/images/dodge_projectiles/Level1_Barons.png)            | ![Revenants](assets/images/dodge_projectiles/Level2_Revenants.png)                                   | ![Flames + Flaming Skulls + Mancubus](assets/images/dodge_projectiles/Level3_Flames_Flaming_Skulls_Mancubus.png)         | ![Complete](assets/images/dodge_projectiles/Level4_Complete.png) |




# Quick Start
LevDoom follows the [Gymnasium](https://github.com/Farama-Foundation/Gymnasium) interface. You can create an environment using the `make` function:
```python
import levdoom

env = levdoom.make('DefendTheCenterLevel0-v0')
```
You can also directly create all environments of a level using the `make_level` function:
```python
import levdoom
from levdoom.utils.enums import Scenario

level_envs = levdoom.make_level(Scenario.DODGE_PROJECTILES, level=3)
```


## Examples
Find examples of using LevDoom environments in the [examples](levdoom/examples) folder.

### Single Environment

```python
import levdoom

env = levdoom.make('HealthGatheringLevel3_1-v0')
env.reset()
done = False
steps = 0
total_reward = 0
while not done:
    action = env.action_space.sample()
    state, reward, done, truncated, info = env.step(action)
    env.render()
    steps += 1
    total_reward += reward
print(f"Episode finished in {steps} steps. Reward: {total_reward:.2f}")
env.close()
```

### Single Level
```python
import levdoom
from levdoom.utils.enums import Scenario

max_steps = 100
level_envs = levdoom.make_level(Scenario.SEEK_AND_SLAY, level=1, max_steps=max_steps)
for env in level_envs:
    env.reset()
    total_reward = 0
    for i in range(max_steps):
        action = env.action_space.sample()
        state, reward, done, truncated, info = env.step(action)
        env.render()
        total_reward += reward
        if done or truncated:
            break
    print(f"{env.unwrapped.name} finished in {i + 1} steps. Reward: {total_reward:.2f}")
    env.close()
```

## Citation
If you use our work in your research, please cite it as follows:
```bibtex
@inproceedings{tomilin2022levdoom,
  title     = {LevDoom: A Benchmark for Generalization on Level Difficulty in Reinforcement Learning},
  author    = {Tristan Tomilin and Tianhong Dai and Meng Fang and Mykola Pechenizkiy},
  booktitle = {In Proceedings of the IEEE Conference on Games},
  year      = {2022}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/thu-ml/tianshou",
    "name": "LevDoom",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "vizdoom,reinforcement learning,benchmarking,generalization",
    "author": "Tristan Tomilin",
    "author_email": "tristan.tomilin@hotmail.com",
    "download_url": "https://files.pythonhosted.org/packages/77/68/bd832784f2f5e0301d6f1541596ebe55419281dba1b500ead05d7454a836/LevDoom-1.0.1.tar.gz",
    "platform": null,
    "description": "# LevDoom\nLevDoom is a benchmark with difficulty levels based on visual modifications, intended for research \nin generalization of deep reinforcement learning agents. The benchmark is based upon \n[ViZDoom](https://github.com/Farama-Foundation/ViZDoom), a platform addressed to pixel based learning in the \nFPS game domain.\n\nFor more details please refer to our [CoG2022](https://ieee-cog.org/2022/assets/papers/paper_30.pdf) paper.\nTo reproduce the paper results, follow the instructions in the [RL](rl/README.md) module.\n\n![Default](assets/gifs/scenarios.gif)\n\n## Installation\nTo install LevDoom from PyPi, just run:\n```bash\n$ pip install LevDoom\n```\nAlternatively, to install LevDoom from source, clone this repo, cd to it, and then:\n1. Clone the repository\n```bash\n$ git clone https://github.com/TTomilin/LevDoom\n```\n2. Navigate into the repository\n```bash\n$ cd LevDoom\n```\n3. Install the dependencies \n```bash \n$ pip install .\n```\n## Environments\nThe benchmark consists of 4 scenarios, each with 5 levels of increasing difficulty.\nThe full list of environments can be found in the [LevDoom](levdoom/README.md) module.\n\n| Scenario          | Success Metric | Enemies | Weapon  | Items   | Max Steps | Actions | Stochasticity                   | \n|-------------------|----------------|---------|---------|---------|-----------|---------|---------------------------------|\n| Defend the Center | Frames Alive   | ✓ | ✓ | ✗ | 2100      | 6       | Enemy behaviour                 | \n| Health Gathering  | Frames Alive   | ✗ | ✗ | ✓ | 2100      | 6       | Health kit spawn locations      |\n| Seek and Slay     | Kill Count     | ✓ | ✓ | ✗ | 1250      | 12      | Enemy and agent spawn locations |\n| Dodge Projectiles | Frames Alive   | ✓ | ✗ | ✗ | 2100      | 6       | Enemy behaviour                 |\n\n\n### Environment Modifications\nLevDoom imposes generalization difficulty by modifying the base environment of a scenario.\nEach modification increases the difficulty level of the generalization task. \nThere are 8 types of modifications across all scenarios.\n\n| Modification     | Description                                                              |\n|------------------|--------------------------------------------------------------------------|\n| Textures         | Varies the appearance of the walls, ceilings and floors                  |\n| Obstacles        | Adds impassable obstructions to the map that impede the agent's movement |\n| Entity Size      | Changes the size of enemies and obtainable items                         |\n| Entity Type      | Changes the type of enemies and obtainable items                         |\n| Entity Rendering | Varies the rendering type of enemies and obtainable items                |\n| Entity Speed     | Increases the speed of enemies                                           |\n| Agent Height     | Vertically shifts the view point of the agent                            |\n\n\n### Difficulty Levels\nThe number of combined modifications determines the difficulty level.\n\n| Scenario          | Level 0                                                        | Level 1                                                                 | Level 2                                                                                              | Level 3                                                                                                                  | Level 4                                                          |\n|-------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|\n| Defend the Center | ![Default](assets/images/defend_the_center/Level0_Default.png) | ![Gore](assets/images/defend_the_center/Level1_Gore.png)                | ![Stone Wall + Flying Enemies](assets/images/defend_the_center/Level2_Stone_Wall_Flying_Enemies.png) | ![Resized Flying Enemies + Mossy Bricks](assets/images/defend_the_center/Level3_Resized_Flying_Enemies_Mossy_Bricks.png) | ![Complete](assets/images/defend_the_center/Level4_Complete.png) |\n| Health Gathering  | ![Default](assets/images/health_gathering/Level0_Default.png)  | ![Resized Kits](assets/images/health_gathering/Level1_Resized_Kits.png) | ![Stone Wall + Flying Enemies](assets/images/health_gathering/Level2_Slime_Obstacles.png)            | ![Lava + Supreme + Resized Agent](assets/images/health_gathering/Level3_Lava_Supreme_Resized_Agent.png)                  | ![Complete](assets/images/health_gathering/Level4_Complete.png)  |\n| Seek and Slay     | ![Default](assets/images/seek_and_slay/Level0_Default.png)     | ![Shadows](assets/images/seek_and_slay/Level1_Shadows.png)              | ![Obstacles + Resized Enemies](assets/images/seek_and_slay/Level2_Obstacles_Resized_Enemies.png)     | ![Red + Obstacles + Invulnerable](assets/images/seek_and_slay/Level3_Red_Obstacles_Invulnerable.png)                     | ![Complete](assets/images/seek_and_slay/Level4_Complete.png)     |\n| Dodge Projectiles | ![Default](assets/images/dodge_projectiles/Level0_Default.png) | ![Barons](assets/images/dodge_projectiles/Level1_Barons.png)            | ![Revenants](assets/images/dodge_projectiles/Level2_Revenants.png)                                   | ![Flames + Flaming Skulls + Mancubus](assets/images/dodge_projectiles/Level3_Flames_Flaming_Skulls_Mancubus.png)         | ![Complete](assets/images/dodge_projectiles/Level4_Complete.png) |\n\n\n\n\n# Quick Start\nLevDoom follows the [Gymnasium](https://github.com/Farama-Foundation/Gymnasium) interface. You can create an environment using the `make` function:\n```python\nimport levdoom\n\nenv = levdoom.make('DefendTheCenterLevel0-v0')\n```\nYou can also directly create all environments of a level using the `make_level` function:\n```python\nimport levdoom\nfrom levdoom.utils.enums import Scenario\n\nlevel_envs = levdoom.make_level(Scenario.DODGE_PROJECTILES, level=3)\n```\n\n\n## Examples\nFind examples of using LevDoom environments in the [examples](levdoom/examples) folder.\n\n### Single Environment\n\n```python\nimport levdoom\n\nenv = levdoom.make('HealthGatheringLevel3_1-v0')\nenv.reset()\ndone = False\nsteps = 0\ntotal_reward = 0\nwhile not done:\n    action = env.action_space.sample()\n    state, reward, done, truncated, info = env.step(action)\n    env.render()\n    steps += 1\n    total_reward += reward\nprint(f\"Episode finished in {steps} steps. Reward: {total_reward:.2f}\")\nenv.close()\n```\n\n### Single Level\n```python\nimport levdoom\nfrom levdoom.utils.enums import Scenario\n\nmax_steps = 100\nlevel_envs = levdoom.make_level(Scenario.SEEK_AND_SLAY, level=1, max_steps=max_steps)\nfor env in level_envs:\n    env.reset()\n    total_reward = 0\n    for i in range(max_steps):\n        action = env.action_space.sample()\n        state, reward, done, truncated, info = env.step(action)\n        env.render()\n        total_reward += reward\n        if done or truncated:\n            break\n    print(f\"{env.unwrapped.name} finished in {i + 1} steps. Reward: {total_reward:.2f}\")\n    env.close()\n```\n\n## Citation\nIf you use our work in your research, please cite it as follows:\n```bibtex\n@inproceedings{tomilin2022levdoom,\n  title     = {LevDoom: A Benchmark for Generalization on Level Difficulty in Reinforcement Learning},\n  author    = {Tristan Tomilin and Tianhong Dai and Meng Fang and Mykola Pechenizkiy},\n  booktitle = {In Proceedings of the IEEE Conference on Games},\n  year      = {2022}\n}\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "LevDoom: A Generalization Benchmark for Deep Reinforcement Learning",
    "version": "1.0.1",
    "project_urls": {
        "Homepage": "https://github.com/thu-ml/tianshou"
    },
    "split_keywords": [
        "vizdoom",
        "reinforcement learning",
        "benchmarking",
        "generalization"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "628e79cd15f4cb790432fab0be67ee4a25018e4453440c80dc04adbd157c269a",
                "md5": "c916cdf9b546eeb49e6302af5941b567",
                "sha256": "7ecdd310f166cf8a36f78d52c9e5b4f7bbf33615d3428929252c6873b5dfbb7d"
            },
            "downloads": -1,
            "filename": "LevDoom-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c916cdf9b546eeb49e6302af5941b567",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 6122,
            "upload_time": "2024-02-02T14:52:12",
            "upload_time_iso_8601": "2024-02-02T14:52:12.295512Z",
            "url": "https://files.pythonhosted.org/packages/62/8e/79cd15f4cb790432fab0be67ee4a25018e4453440c80dc04adbd157c269a/LevDoom-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7768bd832784f2f5e0301d6f1541596ebe55419281dba1b500ead05d7454a836",
                "md5": "d4b80275e067643184f1a9d6e9d18e71",
                "sha256": "e75047327d250b12e249afa3aeafa883a9a3d3a53b75e05c0ad1089ae40a036d"
            },
            "downloads": -1,
            "filename": "LevDoom-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "d4b80275e067643184f1a9d6e9d18e71",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 6095,
            "upload_time": "2024-02-02T14:52:14",
            "upload_time_iso_8601": "2024-02-02T14:52:14.341730Z",
            "url": "https://files.pythonhosted.org/packages/77/68/bd832784f2f5e0301d6f1541596ebe55419281dba1b500ead05d7454a836/LevDoom-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-02 14:52:14",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "thu-ml",
    "github_project": "tianshou",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "levdoom"
}
        
Elapsed time: 0.38866s