Leye-classifer


NameLeye-classifer JSON
Version 0.0.3 PyPI version JSON
download
home_pagehttps://github.com/batoog101/SentiLEYE.git
SummaryA sentiment lexicon algorithm to classify pidgin English and English text into positive, negative or neutral
upload_time2023-08-06 00:16:11
maintainer
docs_urlNone
authorBayode Ogunleye
requires_python>=3.7
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Hello, 
You are welcome to SentiLeye sentiment classifier

A sentiment lexicon algorithm to classify pidgin English and English text into positive, negative or neutral


To use this system, you can enter raw text directly or enter your document name (for example, data.csv). Kindly ensure your document is in csv file format.
You need to name the column as 'text'. 
The system creates new column for score and class. 
You should expect the output as shown below. 

            text     score     class
the bank is good      2       positive


## How to use the packages

pip install 

from  sentileye import polarity
## then
polarity.result()

Follow the instructions, enter your csv filename (for example, data.csv) or your raw text directly to classify. 

NB: filename - your csv file must be in your current working directory 


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/batoog101/SentiLEYE.git",
    "name": "Leye-classifer",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "Bayode Ogunleye",
    "author_email": "batoog101@yahoo.com",
    "download_url": "https://files.pythonhosted.org/packages/8a/d2/41dfb58d4160d3295ad224787a96178f24f73f338af35138955e04ab3aff/Leye_classifer-0.0.3.tar.gz",
    "platform": null,
    "description": "Hello, \r\nYou are welcome to SentiLeye sentiment classifier\r\n\r\nA sentiment lexicon algorithm to classify pidgin English and English text into positive, negative or neutral\r\n\r\n\r\nTo use this system, you can enter raw text directly or enter your document name (for example, data.csv). Kindly ensure your document is in csv file format.\r\nYou need to name the column as 'text'. \r\nThe system creates new column for score and class. \r\nYou should expect the output as shown below. \r\n\r\n            text     score     class\r\nthe bank is good      2       positive\r\n\r\n\r\n## How to use the packages\r\n\r\npip install \r\n\r\nfrom  sentileye import polarity\r\n## then\r\npolarity.result()\r\n\r\nFollow the instructions, enter your csv filename (for example, data.csv) or your raw text directly to classify. \r\n\r\nNB: filename - your csv file must be in your current working directory \r\n\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A sentiment lexicon algorithm to classify pidgin English and English text into positive, negative or neutral",
    "version": "0.0.3",
    "project_urls": {
        "Homepage": "https://github.com/batoog101/SentiLEYE.git"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e0a119892cc4c9f8d4d84786d4aeb85e79b2a0d9b1d87796774e9639ba1b1bbc",
                "md5": "fa9f7a241537758c46e47355a09d6f5b",
                "sha256": "1282c60d0558a66f65c101bc3776c03e79d697fa75e3910d4595bb1dc97eb173"
            },
            "downloads": -1,
            "filename": "Leye_classifer-0.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fa9f7a241537758c46e47355a09d6f5b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 5218,
            "upload_time": "2023-08-06T00:16:09",
            "upload_time_iso_8601": "2023-08-06T00:16:09.975105Z",
            "url": "https://files.pythonhosted.org/packages/e0/a1/19892cc4c9f8d4d84786d4aeb85e79b2a0d9b1d87796774e9639ba1b1bbc/Leye_classifer-0.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8ad241dfb58d4160d3295ad224787a96178f24f73f338af35138955e04ab3aff",
                "md5": "c2fa11757d1147eb08fa0f2ed91ac700",
                "sha256": "624156be40a63ba0c4aa1be873fa28f08dc4e7b01b1d3cc374f50c75399526c6"
            },
            "downloads": -1,
            "filename": "Leye_classifer-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "c2fa11757d1147eb08fa0f2ed91ac700",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 24890,
            "upload_time": "2023-08-06T00:16:11",
            "upload_time_iso_8601": "2023-08-06T00:16:11.804071Z",
            "url": "https://files.pythonhosted.org/packages/8a/d2/41dfb58d4160d3295ad224787a96178f24f73f338af35138955e04ab3aff/Leye_classifer-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-06 00:16:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "batoog101",
    "github_project": "SentiLEYE",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "leye-classifer"
}
        
Elapsed time: 0.12249s