Leye-classifer-v2


NameLeye-classifer-v2 JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/batoog101/SentiLEYE.git
SummaryA sentiment lexicon algorithm to classify pidgin English and English text into positive, negative or neutral
upload_time2023-07-31 22:05:11
maintainer
docs_urlNone
authorBayode Ogunleye
requires_python
license
keywords sentiment analysis pidgin bank
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Hello, you are welcome to Leye classifier

A sentiment lexicon algorithm to classify pidgin English and English text into positive, negative or neutral


To use this system, you can enter raw text directly or enter your document name which should be in a csv file format (for example, data.csv). You need to name the column as 'text'. 
The system creates new column for score and class.  You should expect the output as shown below. 

            text     score     class
the bank is good      2       positive


### How to use the packages

pip install Leye

from sentileye.polarity import result

Follow the instructions, enter your csv filename (for example, data.csv) or your raw text directly to classify. 
NB: filename - the csv file must be in your current working directory 




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/batoog101/SentiLEYE.git",
    "name": "Leye-classifer-v2",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "sentiment analysis,pidgin,bank",
    "author": "Bayode Ogunleye",
    "author_email": "batoog101@yahoo.com",
    "download_url": "https://files.pythonhosted.org/packages/68/5d/7878773fd57097cbe21c14104f91ee9cd61ac0b1f79f747c8217d621118f/Leye_classifer_v2-0.0.2.tar.gz",
    "platform": null,
    "description": "Hello, you are welcome to Leye classifier\r\n\r\nA sentiment lexicon algorithm to classify pidgin English and English text into positive, negative or neutral\r\n\r\n\r\nTo use this system, you can enter raw text directly or enter your document name which should be in a csv file format (for example, data.csv). You need to name the column as 'text'. \r\nThe system creates new column for score and class.  You should expect the output as shown below. \r\n\r\n            text     score     class\r\nthe bank is good      2       positive\r\n\r\n\r\n### How to use the packages\r\n\r\npip install Leye\r\n\r\nfrom sentileye.polarity import result\r\n\r\nFollow the instructions, enter your csv filename (for example, data.csv) or your raw text directly to classify. \r\nNB: filename - the csv file must be in your current working directory \r\n\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A sentiment lexicon algorithm to classify pidgin English and English text into positive, negative or neutral",
    "version": "0.0.2",
    "project_urls": {
        "Homepage": "https://github.com/batoog101/SentiLEYE.git"
    },
    "split_keywords": [
        "sentiment analysis",
        "pidgin",
        "bank"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6923342cce85214db560bb21e15785615d356eb551840aae760ae40d37c5da0e",
                "md5": "eace2f2d49ce8497bb2f57f2f0f29027",
                "sha256": "3549cee81431435c2e1ee6f31ee37596014b71ee1ea8887460f4f536d7a2d620"
            },
            "downloads": -1,
            "filename": "Leye_classifer_v2-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "eace2f2d49ce8497bb2f57f2f0f29027",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 2511,
            "upload_time": "2023-07-31T22:05:10",
            "upload_time_iso_8601": "2023-07-31T22:05:10.396468Z",
            "url": "https://files.pythonhosted.org/packages/69/23/342cce85214db560bb21e15785615d356eb551840aae760ae40d37c5da0e/Leye_classifer_v2-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "685d7878773fd57097cbe21c14104f91ee9cd61ac0b1f79f747c8217d621118f",
                "md5": "2f55868025264a785e1461a77d65c2fd",
                "sha256": "6785e7374f2f05878b5ee2ad193a1e992ae0a91656d1d042dcec6c5e37a78fd8"
            },
            "downloads": -1,
            "filename": "Leye_classifer_v2-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "2f55868025264a785e1461a77d65c2fd",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 1765,
            "upload_time": "2023-07-31T22:05:11",
            "upload_time_iso_8601": "2023-07-31T22:05:11.546399Z",
            "url": "https://files.pythonhosted.org/packages/68/5d/7878773fd57097cbe21c14104f91ee9cd61ac0b1f79f747c8217d621118f/Leye_classifer_v2-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-31 22:05:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "batoog101",
    "github_project": "SentiLEYE",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "leye-classifer-v2"
}
        
Elapsed time: 0.19177s