LibKaleidoscope


NameLibKaleidoscope JSON
Version 1.4.2 PyPI version JSON
download
home_pagehttps://egecetin.github.io/libKaleidoscope/
SummaryA library to create kaleidoscope effect on images.
upload_time2025-08-29 07:30:04
maintaineregecetin
docs_urlNone
authoregecetin
requires_pythonNone
licenseMIT License
keywords image-processing video-processing image-manipulation image-filtering video-filtering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">

<img src="https://github.com/egecetin/libKaleidoscope/blob/c1a603da36bcb27b31339bd1075c5e54b156f166/doc/images/logo-white.png" alt="LibKaleidoscope" width="850"/>

<h3>๐ŸŒˆโœจ Transform Images into Mesmerizing Kaleidoscope Art โœจ๐ŸŒˆ</h3>

<p>
<strong>A blazingly fast, cross-platform library to create stunning kaleidoscope effects on images</strong><br>
<em>Built with โค๏ธ using C, C++, Python, and CUDA</em>
</p>

---

### ๐Ÿ“Š **Project Status**

![GitHub](https://img.shields.io/github/license/egecetin/libKaleidoscope?style=for-the-badge)
![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/egecetin/libKaleidoscope/pre-commit.yml?branch=master&label=pre-commit&logo=precommit&logoColor=white&style=for-the-badge)
![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/egecetin/libKaleidoscope/codeql-analysis.yml?branch=master&label=CodeQL&logo=github&style=for-the-badge)
![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/egecetin/libKaleidoscope/os-builds.yml?branch=master&label=Build&logo=github&logoColor=white&style=for-the-badge)
![Codecov](https://img.shields.io/codecov/c/github/egecetin/libkaleidoscope?logo=codecov&logoColor=white&style=for-the-badge&token=70EJQJRRBH)
![Codacy grade](https://img.shields.io/codacy/grade/b6c3a6abeeb34c2e8aa67aaeb8bd2982?logo=codacy&style=for-the-badge)

### ๐Ÿ› ๏ธ **Technology Stack**

![C Badge](https://img.shields.io/badge/C-%23555555?style=for-the-badge&logo=c&logoColor=white)
![C++ Badge](https://img.shields.io/badge/C%2B%2B-%23f34b7d?style=for-the-badge&logo=cplusplus&logoColor=white)
![Python Badge](https://img.shields.io/badge/Python-%233572A5?style=for-the-badge&logo=python&logoColor=white)
![CUDA Badge](https://img.shields.io/badge/CUDA-%233A4E3A?style=for-the-badge&logo=nvidia&logoColor=white)
![CMake Badge](https://img.shields.io/badge/CMake-%23008FBA?style=for-the-badge&logo=cmake&logoColor=white)

</div>

---

## ๐ŸŽฏ **What is LibKaleidoscope?**

LibKaleidoscope is a **high-performance**, **cross-platform** library that transforms ordinary images into breathtaking kaleidoscope patterns. Written in C with FFI support, it offers seamless integration with multiple programming languages and includes GPU acceleration for ultimate performance.

> ๐Ÿ”— **Learn More**: Check out the [mathematical explanation](https://egecetin.github.io/Projects/kaleidoscope) of the kaleidoscope effect!


## ๐ŸŒŸ **Key Features**

<div align="center">

| ๐Ÿš€ **Performance** | ๐ŸŒ **Multi-Language** | ๐ŸŽจ **Easy to Use** | โšก **GPU Accelerated** |
|:---:|:---:|:---:|:---:|
| Ultra-fast processing with optimized algorithms | C, C++, Python, CUDA support | Simple 3-function API | CUDA backend for maximum speed |

</div>

---

## ๐ŸŽญ **Supported Languages**

<details>
<summary><strong>๐Ÿ” Click to see language details</strong></summary>

### ๐ŸŽฏ **Core Languages**

| Language | Purpose | Features |
|:---------|:--------|:---------|
| **๐Ÿ”ง C** | Main programming language | Core library, maximum performance |
| **โšก C++** | Header-only binding | Easy integration, STL compatibility |
| **๐Ÿ Python** | Cython bindings | PyPI package, Pythonic interface |
| **๐Ÿš€ CUDA** | GPU computing | Parallel processing, extreme performance |

</details>

---

## ๐Ÿ“ฆ **Quick Installation**

### ๐Ÿ **Python Users (Recommended)**

```bash
# ๐ŸŽ‰ One-liner installation from PyPI
pip install LibKaleidoscope
```

> ๐Ÿ’ก **Pro Tip**: Check `python/python-test.py` for example usage!

---

## ๐Ÿ› ๏ธ **Building from Source**

<details>
<summary><strong>๐Ÿ—๏ธ Standard Build</strong></summary>

```bash
# ๐Ÿš€ Quick build commands
mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
cmake --build . --parallel
```

</details>

<details>
<summary><strong>โšก CUDA-Enabled Build</strong></summary>

> โš ๏ธ **IMPORTANT**: CUDA Toolkit must be installed and available on your system before building with CUDA support. Download from [NVIDIA Developer](https://developer.nvidia.com/cuda-downloads).

```bash
# ๐Ÿ”ฅ GPU-accelerated build
mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release -DKALEIDOSCOPE_ENABLE_CUDA=ON ..
cmake --build . --parallel
```

</details>

<details>
<summary><strong>๐Ÿ”ง Custom Build Options</strong></summary>

```bash
# ๐ŸŽ›๏ธ Disable command line tool (reduces dependencies)
cmake -DCMAKE_BUILD_TYPE=Release -DKALEIDOSCOPE_ENABLE_CMD_TOOL=OFF ..
```

> ๐Ÿ“ **Note**: The libjpeg-turbo dependency is only for testing and demo purposes

</details>

---

## ๐ŸŽฏ **Usage Guide**

### ๐ŸŽช **Simple 3-Step API**

LibKaleidoscope makes image transformation incredibly simple with just **3 functions**:

```mermaid
flowchart LR
    A[๐ŸŽฏ Initialize] --> B[๐ŸŽจ Process] --> C[๐Ÿงน Cleanup]
    B --> B
```

<details>
<summary><strong>๐Ÿ” C API Reference</strong></summary>

| Step | Function | Purpose |
|:----:|:---------|:--------|
| **1๏ธโƒฃ** | `initKaleidoscope()` | Initialize transformation matrix |
| **2๏ธโƒฃ** | `processKaleidoscope()` | Process images (reusable for same dimensions) |
| **3๏ธโƒฃ** | `deInitKaleidoscope()` | Clean up resources |

```c
// ๐ŸŽฏ Step 1: Initialize
int initKaleidoscope(KaleidoscopeHandle *handler, int n, int width, int height, double scaleDown);

// ๐ŸŽจ Step 2: Process (use multiple times)
void processKaleidoscope(KaleidoscopeHandle *handler, double k, unsigned char *imgIn, unsigned char *imgOut);

// ๐Ÿงน Step 3: Cleanup
void deInitKaleidoscope(KaleidoscopeHandle *handler);
```

> ๐Ÿ“š **Example**: Check `src/kaleidoscope-cmd.c` for complete usage

</details>

### ๐Ÿ–ฅ๏ธ **Command Line Magic**

Transform images instantly with the command line tool:

```bash
# โœจ Create kaleidoscope effect (N=8 segments)
./kaleidoscope-cmd <Input_Image> <Output_Image> <N>
```

### ๐ŸŽจ **Visual Example**

<div align="center">
    <img src="https://github.com/egecetin/libKaleidoscope/blob/c1a603da36bcb27b31339bd1075c5e54b156f166/doc/images/ac-synin.jpg" width="400"/> โžก๏ธ <img src="https://github.com/egecetin/libKaleidoscope/blob/c1a603da36bcb27b31339bd1075c5e54b156f166/doc/images/ac-synin-out.jpg" width="400"/>
    <br>
    <em>๐ŸŽฎ Original โ†’ Kaleidoscope (N=8)</em><br>
    <small>Image source: AC Valhalla</small>
</div>

---

### ๐Ÿ’ป **Programming Language Examples**

<details>
<summary><strong>โšก C++ Header-Only Binding</strong></summary>

```cpp
#include <kaleidoscope.hpp>

int main() {
    // ๐ŸŽฏ One-line initialization with all parameters
    kalos::Kaleidoscope handler(n, width, height, nComponents, scaleDown, k);

    // ๐ŸŽจ Process your image data
    handler.processImage(inData, outData, nPixel);

    // ๐Ÿงน Automatic cleanup when handler goes out of scope
    return 0;
}
```

> ๐Ÿš€ **Advantage**: RAII-style resource management, exception safety

</details>

<details>
<summary><strong>๐Ÿ”ฅ CUDA GPU Backend</strong></summary>

```cpp
#include <cuda/kaleidoscope.cuh>

int main() {
    // ๐Ÿš€ GPU-accelerated kaleidoscope
    kalos::cuda::Kaleidoscope handler(n, width, height, nComponents, scaleDown, k);

    // โšก Ultra-fast GPU processing
    // โš ๏ธ Important: inData and outData must be device-allocated!
    handler.processImage(inData, outData, nPixel);

    return 0;
}
```

> ๐Ÿ’ก **Performance Tip**: Ensure your data is allocated on GPU memory for maximum speed

</details>

> ๐Ÿงช **Examples**: See `tests/processingTest.cpp` and `tests/processingTest.cu` for complete implementations

---

## ๐Ÿš€ **Performance Benchmarks**

### โšก **Lightning Fast Performance**

> **Hardware**: Intel i7-11800H CPU

<div align="center">

| ๐ŸŽฅ **Resolution** | ๐Ÿ“Š **FPS** | ๐ŸŽฏ **Use Case** |
|:------------------|:-----------|:----------------|
| ๐Ÿ”ฅ **4K UHD** (3840ร—2160) | **~65 FPS** | Professional video editing |
| ๐ŸŽฌ **Full HD** (1920ร—1080) | **~265 FPS** | Real-time streaming |
| ๐Ÿ“บ **720p** (1280ร—720) | **~640 FPS** | Gaming overlays |
| ๐Ÿ“ฑ **576p** (720ร—576) | **~1350 FPS** | Mobile apps |

</div>

### ๐Ÿ“ˆ **Performance Visualization**

<div align="center">
    <img src="https://github.com/egecetin/libKaleidoscope/blob/c1a603da36bcb27b31339bd1075c5e54b156f166/doc/images/performance-white.png" alt="Performance Chart" width="850"/>
</div>

<details>
<summary><strong>๐Ÿ”ฌ Mathematical Formula</strong></summary>

The performance follows an exponential decay model:

$$\Large FPS = a \cdot e^{b \cdot nPixels} + c \cdot e^{d \cdot nPixels}$$

**Where:**
- $a = 2492$
- $b = -2.165 \times 10^{-6}$
- $c = 364.9$
- $d = -2.08 \times 10^{-7}$

</details>

### ๐Ÿƒโ€โ™‚๏ธ **Benchmark Your System**

```bash
# ๐ŸŽฏ Test performance on your hardware
./kaleidoscope-cmd <Input_Image> <Output_Image> <N> <Number_of_loops>
```

> โš ๏ธ **Important**: Use `-DCMAKE_BUILD_TYPE=Release` for accurate benchmarks

---

## ๐Ÿค **Contributing**

We welcome contributions! Please feel free to submit issues, feature requests, or pull requests.

## ๐Ÿ“„ **License**

This project is licensed under the terms of MIT License.

---

<div align="center">

### ๐ŸŒŸ **Star this repo if you found it useful!** ๐ŸŒŸ

Made with โค๏ธ by [egecetin](https://github.com/egecetin)

</div>

            

Raw data

            {
    "_id": null,
    "home_page": "https://egecetin.github.io/libKaleidoscope/",
    "name": "LibKaleidoscope",
    "maintainer": "egecetin",
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": "egecetin@hotmail.com.tr",
    "keywords": "image-processing, video-processing, image-manipulation, image-filtering, video-filtering",
    "author": "egecetin",
    "author_email": "egecetin@hotmail.com.tr",
    "download_url": "https://files.pythonhosted.org/packages/bf/d8/8554f64990a29a434a3505ccb8ebb0b8caff92d03b02b3f87eda2cf13870/libkaleidoscope-1.4.2.tar.gz",
    "platform": "any",
    "description": "<div align=\"center\">\n\n<img src=\"https://github.com/egecetin/libKaleidoscope/blob/c1a603da36bcb27b31339bd1075c5e54b156f166/doc/images/logo-white.png\" alt=\"LibKaleidoscope\" width=\"850\"/>\n\n<h3>\ud83c\udf08\u2728 Transform Images into Mesmerizing Kaleidoscope Art \u2728\ud83c\udf08</h3>\n\n<p>\n<strong>A blazingly fast, cross-platform library to create stunning kaleidoscope effects on images</strong><br>\n<em>Built with \u2764\ufe0f using C, C++, Python, and CUDA</em>\n</p>\n\n---\n\n### \ud83d\udcca **Project Status**\n\n![GitHub](https://img.shields.io/github/license/egecetin/libKaleidoscope?style=for-the-badge)\n![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/egecetin/libKaleidoscope/pre-commit.yml?branch=master&label=pre-commit&logo=precommit&logoColor=white&style=for-the-badge)\n![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/egecetin/libKaleidoscope/codeql-analysis.yml?branch=master&label=CodeQL&logo=github&style=for-the-badge)\n![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/egecetin/libKaleidoscope/os-builds.yml?branch=master&label=Build&logo=github&logoColor=white&style=for-the-badge)\n![Codecov](https://img.shields.io/codecov/c/github/egecetin/libkaleidoscope?logo=codecov&logoColor=white&style=for-the-badge&token=70EJQJRRBH)\n![Codacy grade](https://img.shields.io/codacy/grade/b6c3a6abeeb34c2e8aa67aaeb8bd2982?logo=codacy&style=for-the-badge)\n\n### \ud83d\udee0\ufe0f **Technology Stack**\n\n![C Badge](https://img.shields.io/badge/C-%23555555?style=for-the-badge&logo=c&logoColor=white)\n![C++ Badge](https://img.shields.io/badge/C%2B%2B-%23f34b7d?style=for-the-badge&logo=cplusplus&logoColor=white)\n![Python Badge](https://img.shields.io/badge/Python-%233572A5?style=for-the-badge&logo=python&logoColor=white)\n![CUDA Badge](https://img.shields.io/badge/CUDA-%233A4E3A?style=for-the-badge&logo=nvidia&logoColor=white)\n![CMake Badge](https://img.shields.io/badge/CMake-%23008FBA?style=for-the-badge&logo=cmake&logoColor=white)\n\n</div>\n\n---\n\n## \ud83c\udfaf **What is LibKaleidoscope?**\n\nLibKaleidoscope is a **high-performance**, **cross-platform** library that transforms ordinary images into breathtaking kaleidoscope patterns. Written in C with FFI support, it offers seamless integration with multiple programming languages and includes GPU acceleration for ultimate performance.\n\n> \ud83d\udd17 **Learn More**: Check out the [mathematical explanation](https://egecetin.github.io/Projects/kaleidoscope) of the kaleidoscope effect!\n\n\n## \ud83c\udf1f **Key Features**\n\n<div align=\"center\">\n\n| \ud83d\ude80 **Performance** | \ud83c\udf10 **Multi-Language** | \ud83c\udfa8 **Easy to Use** | \u26a1 **GPU Accelerated** |\n|:---:|:---:|:---:|:---:|\n| Ultra-fast processing with optimized algorithms | C, C++, Python, CUDA support | Simple 3-function API | CUDA backend for maximum speed |\n\n</div>\n\n---\n\n## \ud83c\udfad **Supported Languages**\n\n<details>\n<summary><strong>\ud83d\udd0d Click to see language details</strong></summary>\n\n### \ud83c\udfaf **Core Languages**\n\n| Language | Purpose | Features |\n|:---------|:--------|:---------|\n| **\ud83d\udd27 C** | Main programming language | Core library, maximum performance |\n| **\u26a1 C++** | Header-only binding | Easy integration, STL compatibility |\n| **\ud83d\udc0d Python** | Cython bindings | PyPI package, Pythonic interface |\n| **\ud83d\ude80 CUDA** | GPU computing | Parallel processing, extreme performance |\n\n</details>\n\n---\n\n## \ud83d\udce6 **Quick Installation**\n\n### \ud83d\udc0d **Python Users (Recommended)**\n\n```bash\n# \ud83c\udf89 One-liner installation from PyPI\npip install LibKaleidoscope\n```\n\n> \ud83d\udca1 **Pro Tip**: Check `python/python-test.py` for example usage!\n\n---\n\n## \ud83d\udee0\ufe0f **Building from Source**\n\n<details>\n<summary><strong>\ud83c\udfd7\ufe0f Standard Build</strong></summary>\n\n```bash\n# \ud83d\ude80 Quick build commands\nmkdir build && cd build\ncmake -DCMAKE_BUILD_TYPE=Release ..\ncmake --build . --parallel\n```\n\n</details>\n\n<details>\n<summary><strong>\u26a1 CUDA-Enabled Build</strong></summary>\n\n> \u26a0\ufe0f **IMPORTANT**: CUDA Toolkit must be installed and available on your system before building with CUDA support. Download from [NVIDIA Developer](https://developer.nvidia.com/cuda-downloads).\n\n```bash\n# \ud83d\udd25 GPU-accelerated build\nmkdir build && cd build\ncmake -DCMAKE_BUILD_TYPE=Release -DKALEIDOSCOPE_ENABLE_CUDA=ON ..\ncmake --build . --parallel\n```\n\n</details>\n\n<details>\n<summary><strong>\ud83d\udd27 Custom Build Options</strong></summary>\n\n```bash\n# \ud83c\udf9b\ufe0f Disable command line tool (reduces dependencies)\ncmake -DCMAKE_BUILD_TYPE=Release -DKALEIDOSCOPE_ENABLE_CMD_TOOL=OFF ..\n```\n\n> \ud83d\udcdd **Note**: The libjpeg-turbo dependency is only for testing and demo purposes\n\n</details>\n\n---\n\n## \ud83c\udfaf **Usage Guide**\n\n### \ud83c\udfaa **Simple 3-Step API**\n\nLibKaleidoscope makes image transformation incredibly simple with just **3 functions**:\n\n```mermaid\nflowchart LR\n    A[\ud83c\udfaf Initialize] --> B[\ud83c\udfa8 Process] --> C[\ud83e\uddf9 Cleanup]\n    B --> B\n```\n\n<details>\n<summary><strong>\ud83d\udd0d C API Reference</strong></summary>\n\n| Step | Function | Purpose |\n|:----:|:---------|:--------|\n| **1\ufe0f\u20e3** | `initKaleidoscope()` | Initialize transformation matrix |\n| **2\ufe0f\u20e3** | `processKaleidoscope()` | Process images (reusable for same dimensions) |\n| **3\ufe0f\u20e3** | `deInitKaleidoscope()` | Clean up resources |\n\n```c\n// \ud83c\udfaf Step 1: Initialize\nint initKaleidoscope(KaleidoscopeHandle *handler, int n, int width, int height, double scaleDown);\n\n// \ud83c\udfa8 Step 2: Process (use multiple times)\nvoid processKaleidoscope(KaleidoscopeHandle *handler, double k, unsigned char *imgIn, unsigned char *imgOut);\n\n// \ud83e\uddf9 Step 3: Cleanup\nvoid deInitKaleidoscope(KaleidoscopeHandle *handler);\n```\n\n> \ud83d\udcda **Example**: Check `src/kaleidoscope-cmd.c` for complete usage\n\n</details>\n\n### \ud83d\udda5\ufe0f **Command Line Magic**\n\nTransform images instantly with the command line tool:\n\n```bash\n# \u2728 Create kaleidoscope effect (N=8 segments)\n./kaleidoscope-cmd <Input_Image> <Output_Image> <N>\n```\n\n### \ud83c\udfa8 **Visual Example**\n\n<div align=\"center\">\n    <img src=\"https://github.com/egecetin/libKaleidoscope/blob/c1a603da36bcb27b31339bd1075c5e54b156f166/doc/images/ac-synin.jpg\" width=\"400\"/> \u27a1\ufe0f <img src=\"https://github.com/egecetin/libKaleidoscope/blob/c1a603da36bcb27b31339bd1075c5e54b156f166/doc/images/ac-synin-out.jpg\" width=\"400\"/>\n    <br>\n    <em>\ud83c\udfae Original \u2192 Kaleidoscope (N=8)</em><br>\n    <small>Image source: AC Valhalla</small>\n</div>\n\n---\n\n### \ud83d\udcbb **Programming Language Examples**\n\n<details>\n<summary><strong>\u26a1 C++ Header-Only Binding</strong></summary>\n\n```cpp\n#include <kaleidoscope.hpp>\n\nint main() {\n    // \ud83c\udfaf One-line initialization with all parameters\n    kalos::Kaleidoscope handler(n, width, height, nComponents, scaleDown, k);\n\n    // \ud83c\udfa8 Process your image data\n    handler.processImage(inData, outData, nPixel);\n\n    // \ud83e\uddf9 Automatic cleanup when handler goes out of scope\n    return 0;\n}\n```\n\n> \ud83d\ude80 **Advantage**: RAII-style resource management, exception safety\n\n</details>\n\n<details>\n<summary><strong>\ud83d\udd25 CUDA GPU Backend</strong></summary>\n\n```cpp\n#include <cuda/kaleidoscope.cuh>\n\nint main() {\n    // \ud83d\ude80 GPU-accelerated kaleidoscope\n    kalos::cuda::Kaleidoscope handler(n, width, height, nComponents, scaleDown, k);\n\n    // \u26a1 Ultra-fast GPU processing\n    // \u26a0\ufe0f Important: inData and outData must be device-allocated!\n    handler.processImage(inData, outData, nPixel);\n\n    return 0;\n}\n```\n\n> \ud83d\udca1 **Performance Tip**: Ensure your data is allocated on GPU memory for maximum speed\n\n</details>\n\n> \ud83e\uddea **Examples**: See `tests/processingTest.cpp` and `tests/processingTest.cu` for complete implementations\n\n---\n\n## \ud83d\ude80 **Performance Benchmarks**\n\n### \u26a1 **Lightning Fast Performance**\n\n> **Hardware**: Intel i7-11800H CPU\n\n<div align=\"center\">\n\n| \ud83c\udfa5 **Resolution** | \ud83d\udcca **FPS** | \ud83c\udfaf **Use Case** |\n|:------------------|:-----------|:----------------|\n| \ud83d\udd25 **4K UHD** (3840\u00d72160) | **~65 FPS** | Professional video editing |\n| \ud83c\udfac **Full HD** (1920\u00d71080) | **~265 FPS** | Real-time streaming |\n| \ud83d\udcfa **720p** (1280\u00d7720) | **~640 FPS** | Gaming overlays |\n| \ud83d\udcf1 **576p** (720\u00d7576) | **~1350 FPS** | Mobile apps |\n\n</div>\n\n### \ud83d\udcc8 **Performance Visualization**\n\n<div align=\"center\">\n    <img src=\"https://github.com/egecetin/libKaleidoscope/blob/c1a603da36bcb27b31339bd1075c5e54b156f166/doc/images/performance-white.png\" alt=\"Performance Chart\" width=\"850\"/>\n</div>\n\n<details>\n<summary><strong>\ud83d\udd2c Mathematical Formula</strong></summary>\n\nThe performance follows an exponential decay model:\n\n$$\\Large FPS = a \\cdot e^{b \\cdot nPixels} + c \\cdot e^{d \\cdot nPixels}$$\n\n**Where:**\n- $a = 2492$\n- $b = -2.165 \\times 10^{-6}$\n- $c = 364.9$\n- $d = -2.08 \\times 10^{-7}$\n\n</details>\n\n### \ud83c\udfc3\u200d\u2642\ufe0f **Benchmark Your System**\n\n```bash\n# \ud83c\udfaf Test performance on your hardware\n./kaleidoscope-cmd <Input_Image> <Output_Image> <N> <Number_of_loops>\n```\n\n> \u26a0\ufe0f **Important**: Use `-DCMAKE_BUILD_TYPE=Release` for accurate benchmarks\n\n---\n\n## \ud83e\udd1d **Contributing**\n\nWe welcome contributions! Please feel free to submit issues, feature requests, or pull requests.\n\n## \ud83d\udcc4 **License**\n\nThis project is licensed under the terms of MIT License.\n\n---\n\n<div align=\"center\">\n\n### \ud83c\udf1f **Star this repo if you found it useful!** \ud83c\udf1f\n\nMade with \u2764\ufe0f by [egecetin](https://github.com/egecetin)\n\n</div>\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "A library to create kaleidoscope effect on images.",
    "version": "1.4.2",
    "project_urls": {
        "Download": "https://github.com/egecetin/libKaleidoscope/releases",
        "Homepage": "https://egecetin.github.io/libKaleidoscope/"
    },
    "split_keywords": [
        "image-processing",
        " video-processing",
        " image-manipulation",
        " image-filtering",
        " video-filtering"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "bfd88554f64990a29a434a3505ccb8ebb0b8caff92d03b02b3f87eda2cf13870",
                "md5": "d7dfa338938259d8b3a1c9b7ecb2a2a4",
                "sha256": "3bc6301ca900255822a1c43492f637cf7e3be1e8b6773a31625c96f17b6de6cd"
            },
            "downloads": -1,
            "filename": "libkaleidoscope-1.4.2.tar.gz",
            "has_sig": false,
            "md5_digest": "d7dfa338938259d8b3a1c9b7ecb2a2a4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 69914,
            "upload_time": "2025-08-29T07:30:04",
            "upload_time_iso_8601": "2025-08-29T07:30:04.631477Z",
            "url": "https://files.pythonhosted.org/packages/bf/d8/8554f64990a29a434a3505ccb8ebb0b8caff92d03b02b3f87eda2cf13870/libkaleidoscope-1.4.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-29 07:30:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "egecetin",
    "github_project": "libKaleidoscope",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "libkaleidoscope"
}
        
Elapsed time: 2.26685s