MADAP
~~~~~
.. image:: https://github.com/fuzhanrahmanian/MADAP/blob/master/logo.png?raw=true
:align: center
:width: 240px
Modular and Autonomous Data Analysis Platform (MADAP) is a
well-documented python package which can be used for electrochmeical
data analysis.
This package consists of 3 main classes for analysis:
- Voltammetry
- Impedance spectroscopy
- Arrhenius
This package allows user to upload any common file format of data and
the select the data of choice. The user can use to scientifically plot
and get correspondence analysis from each procedure (i.e. by calling
“eis_analysis” , Nyquist, bode as well as the correspondence equivalent
circuit and its parameters will be drawn). This package can be installed
via pip/conda and can be utilized with a GUI, command line or just
directly importing the module in a python script.
Documentation
~~~~~~~~~~~~~
A documentation for the implementation and use of MADAP can be found
`here <https://fuzhanrahmanian.github.io/MADAP/>`__
Installation
~~~~~~~~~~~~
MADAP can be installed via pip:
.. code:: bash
pip install MADAP
Usage
~~~~~
A brief tutorial video of the basic of MADAP usage can found `here <https://youtu.be/nL-eJpb1AxI>`_.
MADAP can be used in a python script as follows:
.. code:: python
from madap.echem.arrhenius import arrhenius
from madap.echem.e_impedance import e_impedance
from madap.data_acquisition import data_acquisition as da
# Load the data
data = da.acquire_data('data.csv')
# Define the desired plots for Arrhenius analysis
plots_arr = ["arrhenius", "arrhenius_fit"]
# Define the desired plots for impedance analysis
plots_eis = ["nyquist", "nyquist_fit", "bode", "residual"]
# Define a save location#
save_dir = "/results"
### Arrhenius
# Instantiate the Arrhenius class for analysis (column names do not have to match exactly, this is just an example)
Arr = arrhenius.Arrhenius(da.format_data(data["temperature"], da.format_data(data["conductivity"])))
# Perform analysis and plotting
Arr.perform_all_actions(save_dir, plots = plots_arr)
### Impedance
# Initialize the Impedance class for analysis (column names do not have to match exactly, this is just an example)
Im = e_impedance.EImpedance(da.format_data(data["freq"]), da.format_data(data["real"]), da.format_data(data["img"]))
# Initialis the EIS procedure. The initial value is the initial guess for the equivalent circuit (can also be left empty)
Eis = e_impedance.EIS(Im, suggested_circuit = "R0-p(R1,CPE1)",initial_value =[860, 3e+5, 1e-09, 0.90])
# Analyze the data
Eis.perform_all_actions(save_dir, plots = plots_eis)
# More usages and options can be found in the documentation.
MADAP can also be used via command line:
.. code:: bash
python -m madap_cli --file <path_to_file> --procedure <procedure> --results <path_to_results> --header_list <header_list> --plot <list_of_plots>
MADAP can also be used via a GUI:
.. code:: bash
python -m madap_gui
.. image:: https://github.com/fuzhanrahmanian/MADAP/raw/master/GUI.png
:align: center
:width: 800px
License
~~~~~~~
MADAP is licensed under the MIT license. See the LICENSE file for more
details.
Citation
~~~~~~~~
If you use MADAP in your research, please cite this GitHub repository https://github.com/fuzhanrahmanian/MADAP.
.. image:: https://zenodo.org/badge/494354435.svg
:target: https://zenodo.org/badge/latestdoi/494354435
Please also cite the following work:
`[Rahmanian2023] <https://doi.org/10.1038/s41597-023-01936-3>`_ Rahmanian, F., Vogler, M., Wölke, C. et al. "Conductivity experiments for electrolyte formulations and their automated analysis." Sci Data 10, 43 (2023).
References
~~~~~~~~~~
This package is based relies on the following packages and papers:
- Impedance GitHub repository by Matthew D. Murbach and Brian Gerwe and Neal Dawson-Elli and Lok-kun Tsui: `link <https://github.com/ECSHackWeek/impedance.py>`__
- A Method for Improving the Robustness of linear Kramers-Kronig Validity Tests DOI: https://doi.org/10.1016/j.electacta.2014.01.034
Acknowledgement
~~~~~~~~~~~~~~~
This project has received funding from the European Union’s [Horizon 2020 research and innovation programme](https://ec.europa.eu/programmes/horizon2020/en) under grant agreement [No 957189](https://cordis.europa.eu/project/id/957189). The project is part of BATTERY 2030+, the large-scale European research initiative for inventing the sustainable batteries of the future.
=======
History
=======
1.2.6 (2023-12-16)
-------------------
* Fixed bug in CP for differential capacity plot
* Handled None and Infinite values in CP plots
* Fixed index in CV
1.2.5 (2023-12-15)
-------------------
* Fixed bug in CA for zero reaction rate constant
* Fixed bug in index handling for CA
* Fixed bug in plot ticks
1.2.3 (2023-12-11)
-------------------
* Include python 3.8
1.2.1 (2023-12-11)
-------------------
* Added Ciclic Voltammetry to the functions
* CA, CP and CV can be used with multiple plots to chose from
* New and Imrpoved GUI
* Fixed saving bug
1.1.0 (2023-08-07)
-------------------
* Fixes issue with mismatch array length when positive imaginary data is given
0.11.0 (2022-10-16)
-------------------
* Fixed bugs concering the package installation.
* Improved the documentation.
* Imrpoved the file structure.
* madap_gui and madap_cli are now in the same package and can be used as standalone scripts/commands.
0.10.0 (2022-10-03)
-------------------
* Updated support of the python versions
0.9.0 (2022-10-02)
------------------
* Update documentation
0.8.0 (2022-10-02)
------------------
* First release on PyPI.
Raw data
{
"_id": null,
"home_page": "https://github.com/fuzhanrahmanian/MADAP",
"name": "MADAP",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "",
"keywords": "madap",
"author": "Fuzhan Rahmanian",
"author_email": "fuzhanrahmanian@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/39/13/ff3f31b6efd730206db26845ea06a4ae952454e115b5a13941bd2b7a4736/MADAP-1.2.6.tar.gz",
"platform": null,
"description": "\r\n\r\nMADAP\r\n~~~~~\r\n\r\n.. image:: https://github.com/fuzhanrahmanian/MADAP/blob/master/logo.png?raw=true\r\n :align: center\r\n :width: 240px\r\n\r\nModular and Autonomous Data Analysis Platform (MADAP) is a\r\nwell-documented python package which can be used for electrochmeical\r\ndata analysis.\r\n\r\nThis package consists of 3 main classes for analysis:\r\n\r\n- Voltammetry\r\n- Impedance spectroscopy\r\n- Arrhenius\r\n\r\nThis package allows user to upload any common file format of data and\r\nthe select the data of choice. The user can use to scientifically plot\r\nand get correspondence analysis from each procedure (i.e. by calling\r\n\u201ceis_analysis\u201d , Nyquist, bode as well as the correspondence equivalent\r\ncircuit and its parameters will be drawn). This package can be installed\r\nvia pip/conda and can be utilized with a GUI, command line or just\r\ndirectly importing the module in a python script.\r\n\r\nDocumentation\r\n~~~~~~~~~~~~~\r\n\r\nA documentation for the implementation and use of MADAP can be found\r\n`here <https://fuzhanrahmanian.github.io/MADAP/>`__\r\n\r\n\r\nInstallation\r\n~~~~~~~~~~~~\r\n\r\nMADAP can be installed via pip:\r\n\r\n.. code:: bash\r\n\r\n pip install MADAP\r\n\r\n\r\nUsage\r\n~~~~~\r\n\r\nA brief tutorial video of the basic of MADAP usage can found `here <https://youtu.be/nL-eJpb1AxI>`_. \r\n\r\nMADAP can be used in a python script as follows: \r\n\r\n.. code:: python\r\n\r\n from madap.echem.arrhenius import arrhenius\r\n from madap.echem.e_impedance import e_impedance\r\n from madap.data_acquisition import data_acquisition as da\r\n\r\n\r\n # Load the data\r\n data = da.acquire_data('data.csv')\r\n # Define the desired plots for Arrhenius analysis\r\n plots_arr = [\"arrhenius\", \"arrhenius_fit\"]\r\n # Define the desired plots for impedance analysis\r\n plots_eis = [\"nyquist\", \"nyquist_fit\", \"bode\", \"residual\"]\r\n # Define a save location#\r\n save_dir = \"/results\"\r\n\r\n ### Arrhenius\r\n # Instantiate the Arrhenius class for analysis (column names do not have to match exactly, this is just an example)\r\n Arr = arrhenius.Arrhenius(da.format_data(data[\"temperature\"], da.format_data(data[\"conductivity\"])))\r\n # Perform analysis and plotting\r\n Arr.perform_all_actions(save_dir, plots = plots_arr)\r\n\r\n ### Impedance\r\n # Initialize the Impedance class for analysis (column names do not have to match exactly, this is just an example)\r\n Im = e_impedance.EImpedance(da.format_data(data[\"freq\"]), da.format_data(data[\"real\"]), da.format_data(data[\"img\"]))\r\n # Initialis the EIS procedure. The initial value is the initial guess for the equivalent circuit (can also be left empty)\r\n Eis = e_impedance.EIS(Im, suggested_circuit = \"R0-p(R1,CPE1)\",initial_value =[860, 3e+5, 1e-09, 0.90])\r\n # Analyze the data\r\n Eis.perform_all_actions(save_dir, plots = plots_eis)\r\n\r\n # More usages and options can be found in the documentation.\r\n\r\nMADAP can also be used via command line:\r\n\r\n.. code:: bash\r\n\r\n python -m madap_cli --file <path_to_file> --procedure <procedure> --results <path_to_results> --header_list <header_list> --plot <list_of_plots>\r\n\r\nMADAP can also be used via a GUI:\r\n\r\n.. code:: bash\r\n\r\n python -m madap_gui\r\n\r\n.. image:: https://github.com/fuzhanrahmanian/MADAP/raw/master/GUI.png\r\n :align: center\r\n :width: 800px\r\n\r\n\r\nLicense\r\n~~~~~~~\r\n\r\nMADAP is licensed under the MIT license. See the LICENSE file for more\r\ndetails.\r\n\r\n\r\nCitation\r\n~~~~~~~~\r\n\r\nIf you use MADAP in your research, please cite this GitHub repository https://github.com/fuzhanrahmanian/MADAP.\r\n\r\n.. image:: https://zenodo.org/badge/494354435.svg\r\n :target: https://zenodo.org/badge/latestdoi/494354435\r\n\r\nPlease also cite the following work:\r\n`[Rahmanian2023] <https://doi.org/10.1038/s41597-023-01936-3>`_ Rahmanian, F., Vogler, M., W\u00f6lke, C. et al. \"Conductivity experiments for electrolyte formulations and their automated analysis.\" Sci Data 10, 43 (2023).\r\n\r\nReferences\r\n~~~~~~~~~~\r\n\r\nThis package is based relies on the following packages and papers:\r\n- Impedance GitHub repository by Matthew D. Murbach and Brian Gerwe and Neal Dawson-Elli and Lok-kun Tsui: `link <https://github.com/ECSHackWeek/impedance.py>`__\r\n- A Method for Improving the Robustness of linear Kramers-Kronig Validity Tests DOI: https://doi.org/10.1016/j.electacta.2014.01.034\r\n\r\nAcknowledgement\r\n~~~~~~~~~~~~~~~\r\n\r\nThis project has received funding from the European Union\u2019s [Horizon 2020 research and innovation programme](https://ec.europa.eu/programmes/horizon2020/en) under grant agreement [No 957189](https://cordis.europa.eu/project/id/957189). The project is part of BATTERY 2030+, the large-scale European research initiative for inventing the sustainable batteries of the future.\r\n\r\n\r\n=======\r\nHistory\r\n=======\r\n\r\n1.2.6 (2023-12-16)\r\n-------------------\r\n* Fixed bug in CP for differential capacity plot\r\n* Handled None and Infinite values in CP plots\r\n* Fixed index in CV\r\n\r\n\r\n1.2.5 (2023-12-15)\r\n-------------------\r\n* Fixed bug in CA for zero reaction rate constant\r\n* Fixed bug in index handling for CA\r\n* Fixed bug in plot ticks\r\n\r\n1.2.3 (2023-12-11)\r\n-------------------\r\n* Include python 3.8\r\n\r\n1.2.1 (2023-12-11)\r\n-------------------\r\n* Added Ciclic Voltammetry to the functions\r\n* CA, CP and CV can be used with multiple plots to chose from\r\n* New and Imrpoved GUI\r\n* Fixed saving bug\r\n\r\n1.1.0 (2023-08-07)\r\n-------------------\r\n* Fixes issue with mismatch array length when positive imaginary data is given\r\n\r\n0.11.0 (2022-10-16)\r\n-------------------\r\n\r\n* Fixed bugs concering the package installation.\r\n* Improved the documentation.\r\n* Imrpoved the file structure.\r\n* madap_gui and madap_cli are now in the same package and can be used as standalone scripts/commands.\r\n\r\n0.10.0 (2022-10-03)\r\n-------------------\r\n\r\n* Updated support of the python versions\r\n\r\n0.9.0 (2022-10-02)\r\n------------------\r\n\r\n* Update documentation\r\n\r\n0.8.0 (2022-10-02)\r\n------------------\r\n\r\n* First release on PyPI.\r\n",
"bugtrack_url": null,
"license": "MIT license",
"summary": "This is MADAP, a software package for the analysis of electrochemical data.",
"version": "1.2.6",
"project_urls": {
"Homepage": "https://github.com/fuzhanrahmanian/MADAP"
},
"split_keywords": [
"madap"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a1dda31df4d109ce3c6ed6648cb9322442b0217234827c869ee3b0d0a793f3b1",
"md5": "c72b4a5d5b3a581c9dcaa6e492e0b7aa",
"sha256": "e57e5cff104ba15c9e0c2f45c9723f214cd568c19664e0f688428781fc90ff4e"
},
"downloads": -1,
"filename": "MADAP-1.2.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c72b4a5d5b3a581c9dcaa6e492e0b7aa",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 66600,
"upload_time": "2023-12-16T19:28:52",
"upload_time_iso_8601": "2023-12-16T19:28:52.609050Z",
"url": "https://files.pythonhosted.org/packages/a1/dd/a31df4d109ce3c6ed6648cb9322442b0217234827c869ee3b0d0a793f3b1/MADAP-1.2.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3913ff3f31b6efd730206db26845ea06a4ae952454e115b5a13941bd2b7a4736",
"md5": "22f2b23bac36fc68e59140e9a41e9724",
"sha256": "6fc3161bc04735e50d744589589bfe4ecf9ea883eeb4eec9792b412c7d6a851a"
},
"downloads": -1,
"filename": "MADAP-1.2.6.tar.gz",
"has_sig": false,
"md5_digest": "22f2b23bac36fc68e59140e9a41e9724",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 63054,
"upload_time": "2023-12-16T19:28:55",
"upload_time_iso_8601": "2023-12-16T19:28:55.023882Z",
"url": "https://files.pythonhosted.org/packages/39/13/ff3f31b6efd730206db26845ea06a4ae952454e115b5a13941bd2b7a4736/MADAP-1.2.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-12-16 19:28:55",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "fuzhanrahmanian",
"github_project": "MADAP",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "madap"
}