MLAlgos


NameMLAlgos JSON
Version 1.0.0 PyPI version JSON
download
home_pageNone
Summary5 ML Model are available to train bassed on provided dataset, user can select one regresion out of 5 for train.
upload_time2024-05-23 07:13:17
maintainerNone
docs_urlNone
authorDKVG
requires_python>=3.9
licenseNone
keywords ml regressions mlregressions linear polynomial svr random-forest decision-tree regressors
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Installation :

python 3.9 : pip install MLAlgos==1.0.0

python 3.10 : pip install MLAlgos==1.0.1

python 3.11 : pip install MLAlgos==1.0.2



Example:

from MLRegressions import Regressors

import pandas as pd

df = pd.read_csv('Sampledata.csv')

x = df.iloc[:,1:-1].values # Features

y = df.iloc[:,-1].values # Depended Variable

reg = Regressors(x,y,skip_regressor=[],poly_degree=5, test_size=0.2, random_state=0)

obj = reg.fit_models() # To train Models & return class obj [LinearRegression(), LinearRegression(),
 SVR(), DecisionTreeRegressor(random_state=0), RandomForestRegressor(n_estimators=10, random_state=0)]

Linear Regression     : obj[0].predict()

Polynomial Regression : obj[1].predict()

SVR                   : obj[2].predict()

DecisionTreeRegressor : obj[3].predict()

RandomForestRegressor : obj[4].predict()

data = reg.r2_score() # To get r2_scores data for train test set.

reg.plot_train_data() # To plot graphs for Trained set.




            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "MLAlgos",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "ML Regressions, MLRegressions Linear polynomial svr random-forest decision-tree regressors",
    "author": "DKVG",
    "author_email": "gadellidk@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/aa/cc/73328e151c74c759562e256c833901395bb7f2a78c7916fc20c15106144b/mlalgos-1.0.0.tar.gz",
    "platform": null,
    "description": "Installation :\r\n\r\npython 3.9 : pip install MLAlgos==1.0.0\r\n\r\npython 3.10 : pip install MLAlgos==1.0.1\r\n\r\npython 3.11 : pip install MLAlgos==1.0.2\r\n\r\n\r\n\r\nExample:\r\n\r\nfrom MLRegressions import Regressors\r\n\r\nimport pandas as pd\r\n\r\ndf = pd.read_csv('Sampledata.csv')\r\n\r\nx = df.iloc[:,1:-1].values # Features\r\n\r\ny = df.iloc[:,-1].values # Depended Variable\r\n\r\nreg = Regressors(x,y,skip_regressor=[],poly_degree=5, test_size=0.2, random_state=0)\r\n\r\nobj = reg.fit_models() # To train Models & return class obj [LinearRegression(), LinearRegression(),\r\n SVR(), DecisionTreeRegressor(random_state=0), RandomForestRegressor(n_estimators=10, random_state=0)]\r\n\r\nLinear Regression     : obj[0].predict()\r\n\r\nPolynomial Regression : obj[1].predict()\r\n\r\nSVR                   : obj[2].predict()\r\n\r\nDecisionTreeRegressor : obj[3].predict()\r\n\r\nRandomForestRegressor : obj[4].predict()\r\n\r\ndata = reg.r2_score() # To get r2_scores data for train test set.\r\n\r\nreg.plot_train_data() # To plot graphs for Trained set.\r\n\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "5 ML Model are available to train bassed on provided dataset, user can select one regresion out of 5 for train.",
    "version": "1.0.0",
    "project_urls": null,
    "split_keywords": [
        "ml regressions",
        " mlregressions linear polynomial svr random-forest decision-tree regressors"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a3ca2ac7e32cc36448edd9d3099e29bd7b673547e7dc7fb2922549aed8758824",
                "md5": "6c577f5d947687f2097d1df7e56b3153",
                "sha256": "42f792ce85d185fc61a6be4de3f3d7a8ebc70c8828bcbde44fb89c2d9027e613"
            },
            "downloads": -1,
            "filename": "MLAlgos-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6c577f5d947687f2097d1df7e56b3153",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 61525,
            "upload_time": "2024-05-23T07:13:14",
            "upload_time_iso_8601": "2024-05-23T07:13:14.487655Z",
            "url": "https://files.pythonhosted.org/packages/a3/ca/2ac7e32cc36448edd9d3099e29bd7b673547e7dc7fb2922549aed8758824/MLAlgos-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "aacc73328e151c74c759562e256c833901395bb7f2a78c7916fc20c15106144b",
                "md5": "48474f05a8eec38a6a066eb34fb9535b",
                "sha256": "436de8af91ed1874e1de3a59b8cf311a1a88dee1b1dc1dbfb31089d6ca4a86a7"
            },
            "downloads": -1,
            "filename": "mlalgos-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "48474f05a8eec38a6a066eb34fb9535b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 62123,
            "upload_time": "2024-05-23T07:13:17",
            "upload_time_iso_8601": "2024-05-23T07:13:17.050055Z",
            "url": "https://files.pythonhosted.org/packages/aa/cc/73328e151c74c759562e256c833901395bb7f2a78c7916fc20c15106144b/mlalgos-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-23 07:13:17",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "mlalgos"
}
        
Elapsed time: 0.55900s