Installation :
python 3.9 : pip install MLAlgos==1.0.0
python 3.10 : pip install MLAlgos==1.0.1
python 3.11 : pip install MLAlgos==1.0.2
Example:
from MLRegressions import Regressors
import pandas as pd
df = pd.read_csv('Sampledata.csv')
x = df.iloc[:,1:-1].values # Features
y = df.iloc[:,-1].values # Depended Variable
reg = Regressors(x,y,skip_regressor=[],poly_degree=5, test_size=0.2, random_state=0)
obj = reg.fit_models() # To train Models & return class obj [LinearRegression(), LinearRegression(),
SVR(), DecisionTreeRegressor(random_state=0), RandomForestRegressor(n_estimators=10, random_state=0)]
Linear Regression : obj[0].predict()
Polynomial Regression : obj[1].predict()
SVR : obj[2].predict()
DecisionTreeRegressor : obj[3].predict()
RandomForestRegressor : obj[4].predict()
data = reg.r2_score() # To get r2_scores data for train test set.
reg.plot_train_data() # To plot graphs for Trained set.
Raw data
{
"_id": null,
"home_page": null,
"name": "MLAlgos",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "ML Regressions, MLRegressions Linear polynomial svr random-forest decision-tree regressors",
"author": "DKVG",
"author_email": "gadellidk@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/aa/cc/73328e151c74c759562e256c833901395bb7f2a78c7916fc20c15106144b/mlalgos-1.0.0.tar.gz",
"platform": null,
"description": "Installation :\r\n\r\npython 3.9 : pip install MLAlgos==1.0.0\r\n\r\npython 3.10 : pip install MLAlgos==1.0.1\r\n\r\npython 3.11 : pip install MLAlgos==1.0.2\r\n\r\n\r\n\r\nExample:\r\n\r\nfrom MLRegressions import Regressors\r\n\r\nimport pandas as pd\r\n\r\ndf = pd.read_csv('Sampledata.csv')\r\n\r\nx = df.iloc[:,1:-1].values # Features\r\n\r\ny = df.iloc[:,-1].values # Depended Variable\r\n\r\nreg = Regressors(x,y,skip_regressor=[],poly_degree=5, test_size=0.2, random_state=0)\r\n\r\nobj = reg.fit_models() # To train Models & return class obj [LinearRegression(), LinearRegression(),\r\n SVR(), DecisionTreeRegressor(random_state=0), RandomForestRegressor(n_estimators=10, random_state=0)]\r\n\r\nLinear Regression : obj[0].predict()\r\n\r\nPolynomial Regression : obj[1].predict()\r\n\r\nSVR : obj[2].predict()\r\n\r\nDecisionTreeRegressor : obj[3].predict()\r\n\r\nRandomForestRegressor : obj[4].predict()\r\n\r\ndata = reg.r2_score() # To get r2_scores data for train test set.\r\n\r\nreg.plot_train_data() # To plot graphs for Trained set.\r\n\r\n\r\n\r\n",
"bugtrack_url": null,
"license": null,
"summary": "5 ML Model are available to train bassed on provided dataset, user can select one regresion out of 5 for train.",
"version": "1.0.0",
"project_urls": null,
"split_keywords": [
"ml regressions",
" mlregressions linear polynomial svr random-forest decision-tree regressors"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a3ca2ac7e32cc36448edd9d3099e29bd7b673547e7dc7fb2922549aed8758824",
"md5": "6c577f5d947687f2097d1df7e56b3153",
"sha256": "42f792ce85d185fc61a6be4de3f3d7a8ebc70c8828bcbde44fb89c2d9027e613"
},
"downloads": -1,
"filename": "MLAlgos-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6c577f5d947687f2097d1df7e56b3153",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 61525,
"upload_time": "2024-05-23T07:13:14",
"upload_time_iso_8601": "2024-05-23T07:13:14.487655Z",
"url": "https://files.pythonhosted.org/packages/a3/ca/2ac7e32cc36448edd9d3099e29bd7b673547e7dc7fb2922549aed8758824/MLAlgos-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "aacc73328e151c74c759562e256c833901395bb7f2a78c7916fc20c15106144b",
"md5": "48474f05a8eec38a6a066eb34fb9535b",
"sha256": "436de8af91ed1874e1de3a59b8cf311a1a88dee1b1dc1dbfb31089d6ca4a86a7"
},
"downloads": -1,
"filename": "mlalgos-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "48474f05a8eec38a6a066eb34fb9535b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 62123,
"upload_time": "2024-05-23T07:13:17",
"upload_time_iso_8601": "2024-05-23T07:13:17.050055Z",
"url": "https://files.pythonhosted.org/packages/aa/cc/73328e151c74c759562e256c833901395bb7f2a78c7916fc20c15106144b/mlalgos-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-05-23 07:13:17",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "mlalgos"
}