from MLRegressions import Regressors
Example:
import pandas as pd
df = pd.read_csv('Sampledata.csv')
x = df.iloc[:,1:-1].values # Features
y = df.iloc[:,-1].values # Depended Variable
reg = Regressors(x,y,skip_regressor=[],poly_degree=5, test_size=0.2, random_state=0)
obj = reg.fit_models() # To train Models & return class obj [LinearRegression(), LinearRegression(),
SVR(), DecisionTreeRegressor(random_state=0), RandomForestRegressor(n_estimators=10, random_state=0)]
Linear Regression : obj[0].predict()
Polynomial Regression : obj[1].predict()
SVR : obj[2].predict()
DecisionTreeRegressor : obj[3].predict()
RandomForestRegressor : obj[4].predict()
data = reg.r2_score() # To get r2_scores data for train test set.
reg.plot_train_data() # To plot graphs for Trained set.
Raw data
{
"_id": null,
"home_page": null,
"name": "MLRegressions",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "ML Regressions, MLRegressions Linear polynomial svr random-forest decision-tree regressors",
"author": "DKVG",
"author_email": "gadellidk@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/3b/20/790c531bdb7dc769de7f17b3d6cf8a227bc0325de56073836f5edc47e997/mlregressions-1.0.5.tar.gz",
"platform": null,
"description": "from MLRegressions import Regressors\r\n\r\nExample:\r\n\r\nimport pandas as pd\r\n\r\ndf = pd.read_csv('Sampledata.csv')\r\n\r\nx = df.iloc[:,1:-1].values # Features\r\n\r\ny = df.iloc[:,-1].values # Depended Variable\r\n\r\nreg = Regressors(x,y,skip_regressor=[],poly_degree=5, test_size=0.2, random_state=0)\r\n\r\nobj = reg.fit_models() # To train Models & return class obj [LinearRegression(), LinearRegression(),\r\n SVR(), DecisionTreeRegressor(random_state=0), RandomForestRegressor(n_estimators=10, random_state=0)]\r\n\r\nLinear Regression : obj[0].predict()\r\n\r\nPolynomial Regression : obj[1].predict()\r\n\r\nSVR : obj[2].predict()\r\n\r\nDecisionTreeRegressor : obj[3].predict()\r\n\r\nRandomForestRegressor : obj[4].predict()\r\n\r\ndata = reg.r2_score() # To get r2_scores data for train test set.\r\n\r\nreg.plot_train_data() # To plot graphs for Trained set.\r\n\r\n\r\n\r\n",
"bugtrack_url": null,
"license": null,
"summary": "5 ML Model are available to train bassed on provided dataset, user can select one regresion out of 5 for train.",
"version": "1.0.5",
"project_urls": null,
"split_keywords": [
"ml regressions",
" mlregressions linear polynomial svr random-forest decision-tree regressors"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "588e84313e85aff5527e51e347d25f9495b6d04ebc486b5173b37a2453fbf718",
"md5": "45cad2fc195349229a8aaa8351e7aa91",
"sha256": "41962e3f4f1f102271ede4f5778db59cdcffde0acabfaddc18f1ef0f9f74b17a"
},
"downloads": -1,
"filename": "MLRegressions-1.0.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "45cad2fc195349229a8aaa8351e7aa91",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 55985,
"upload_time": "2024-05-22T10:48:43",
"upload_time_iso_8601": "2024-05-22T10:48:43.264700Z",
"url": "https://files.pythonhosted.org/packages/58/8e/84313e85aff5527e51e347d25f9495b6d04ebc486b5173b37a2453fbf718/MLRegressions-1.0.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3b20790c531bdb7dc769de7f17b3d6cf8a227bc0325de56073836f5edc47e997",
"md5": "35c59ce860269aea7115ccb6ed434fc3",
"sha256": "682ec4b8eef3c1c5d7ecb4f58eb1995bf9bd0b52046302ba206302d3ceb0bf1c"
},
"downloads": -1,
"filename": "mlregressions-1.0.5.tar.gz",
"has_sig": false,
"md5_digest": "35c59ce860269aea7115ccb6ed434fc3",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 56455,
"upload_time": "2024-05-22T10:48:44",
"upload_time_iso_8601": "2024-05-22T10:48:44.838470Z",
"url": "https://files.pythonhosted.org/packages/3b/20/790c531bdb7dc769de7f17b3d6cf8a227bc0325de56073836f5edc47e997/mlregressions-1.0.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-05-22 10:48:44",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "mlregressions"
}