MLRegressions


NameMLRegressions JSON
Version 1.0.5 PyPI version JSON
download
home_pageNone
Summary5 ML Model are available to train bassed on provided dataset, user can select one regresion out of 5 for train.
upload_time2024-05-22 10:48:44
maintainerNone
docs_urlNone
authorDKVG
requires_python>=3.10
licenseNone
keywords ml regressions mlregressions linear polynomial svr random-forest decision-tree regressors
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            from MLRegressions import Regressors

Example:

import pandas as pd

df = pd.read_csv('Sampledata.csv')

x = df.iloc[:,1:-1].values # Features

y = df.iloc[:,-1].values # Depended Variable

reg = Regressors(x,y,skip_regressor=[],poly_degree=5, test_size=0.2, random_state=0)

obj = reg.fit_models() # To train Models & return class obj [LinearRegression(), LinearRegression(),
 SVR(), DecisionTreeRegressor(random_state=0), RandomForestRegressor(n_estimators=10, random_state=0)]

Linear Regression     : obj[0].predict()

Polynomial Regression : obj[1].predict()

SVR                   : obj[2].predict()

DecisionTreeRegressor : obj[3].predict()

RandomForestRegressor : obj[4].predict()

data = reg.r2_score() # To get r2_scores data for train test set.

reg.plot_train_data() # To plot graphs for Trained set.




            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "MLRegressions",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "ML Regressions, MLRegressions Linear polynomial svr random-forest decision-tree regressors",
    "author": "DKVG",
    "author_email": "gadellidk@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/3b/20/790c531bdb7dc769de7f17b3d6cf8a227bc0325de56073836f5edc47e997/mlregressions-1.0.5.tar.gz",
    "platform": null,
    "description": "from MLRegressions import Regressors\r\n\r\nExample:\r\n\r\nimport pandas as pd\r\n\r\ndf = pd.read_csv('Sampledata.csv')\r\n\r\nx = df.iloc[:,1:-1].values # Features\r\n\r\ny = df.iloc[:,-1].values # Depended Variable\r\n\r\nreg = Regressors(x,y,skip_regressor=[],poly_degree=5, test_size=0.2, random_state=0)\r\n\r\nobj = reg.fit_models() # To train Models & return class obj [LinearRegression(), LinearRegression(),\r\n SVR(), DecisionTreeRegressor(random_state=0), RandomForestRegressor(n_estimators=10, random_state=0)]\r\n\r\nLinear Regression     : obj[0].predict()\r\n\r\nPolynomial Regression : obj[1].predict()\r\n\r\nSVR                   : obj[2].predict()\r\n\r\nDecisionTreeRegressor : obj[3].predict()\r\n\r\nRandomForestRegressor : obj[4].predict()\r\n\r\ndata = reg.r2_score() # To get r2_scores data for train test set.\r\n\r\nreg.plot_train_data() # To plot graphs for Trained set.\r\n\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "5 ML Model are available to train bassed on provided dataset, user can select one regresion out of 5 for train.",
    "version": "1.0.5",
    "project_urls": null,
    "split_keywords": [
        "ml regressions",
        " mlregressions linear polynomial svr random-forest decision-tree regressors"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "588e84313e85aff5527e51e347d25f9495b6d04ebc486b5173b37a2453fbf718",
                "md5": "45cad2fc195349229a8aaa8351e7aa91",
                "sha256": "41962e3f4f1f102271ede4f5778db59cdcffde0acabfaddc18f1ef0f9f74b17a"
            },
            "downloads": -1,
            "filename": "MLRegressions-1.0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "45cad2fc195349229a8aaa8351e7aa91",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 55985,
            "upload_time": "2024-05-22T10:48:43",
            "upload_time_iso_8601": "2024-05-22T10:48:43.264700Z",
            "url": "https://files.pythonhosted.org/packages/58/8e/84313e85aff5527e51e347d25f9495b6d04ebc486b5173b37a2453fbf718/MLRegressions-1.0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3b20790c531bdb7dc769de7f17b3d6cf8a227bc0325de56073836f5edc47e997",
                "md5": "35c59ce860269aea7115ccb6ed434fc3",
                "sha256": "682ec4b8eef3c1c5d7ecb4f58eb1995bf9bd0b52046302ba206302d3ceb0bf1c"
            },
            "downloads": -1,
            "filename": "mlregressions-1.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "35c59ce860269aea7115ccb6ed434fc3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 56455,
            "upload_time": "2024-05-22T10:48:44",
            "upload_time_iso_8601": "2024-05-22T10:48:44.838470Z",
            "url": "https://files.pythonhosted.org/packages/3b/20/790c531bdb7dc769de7f17b3d6cf8a227bc0325de56073836f5edc47e997/mlregressions-1.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-22 10:48:44",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "mlregressions"
}
        
Elapsed time: 5.66595s