Name | Mean-Squared-Error JSON |
Version |
0.4.0
JSON |
| download |
home_page | None |
Summary | None |
upload_time | 2025-02-23 16:53:03 |
maintainer | None |
docs_url | None |
author | None |
requires_python | None |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# MSE - Mean Squared Error Calculation Package
## Overview
**Mean_Squared_Error** is a Python package for calculating the Mean Squared Error (MSE), a common metric for evaluating regression models. This package provides a simple and efficient way to compute MSE for model predictions.
## Installation
You can install **Mean_Squared_Error** using pip:
```bash
pip install Mean_Squared_Error
```
## Usage
```python
from Mean_Squared_Error import MSE
# Example usage
result = MSE([1, 2, 3], [4, 5, 6])
print(result)
```
### MSE(y_true, y_pred)
Calculates the Mean Squared Error between true values and predicted values.
**Parameters:**
- `y_true` (list/array): Ground truth values
- `y_pred` (list/array): Predicted values
**Returns:**
- float: The calculated Mean Squared Error
## Examples
```python
# Basic usage
true_values = [1, 2, 3, 4, 5]
predicted_values = [1.1, 2.2, 2.9, 4.1, 5.2]
error = MSE(true_values, predicted_values)
print(f"Mean Squared Error: {error}")
# Using with numpy arrays
import numpy as np
y_true = np.array([1.0, 2.0, 3.0])
y_pred = np.array([1.1, 1.9, 3.2])
error = MSE(y_true, y_pred)
print(f"Mean Squared Error: {error}")
```
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Raw data
{
"_id": null,
"home_page": null,
"name": "Mean-Squared-Error",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/81/a4/fa8f5c2c0c3dca18aa5bc4bb30cd467292b9481b7e1e4b34c71cb88ec276/mean_squared_error-0.4.0.tar.gz",
"platform": null,
"description": "# MSE - Mean Squared Error Calculation Package\r\n\r\n## Overview\r\n\r\n**Mean_Squared_Error** is a Python package for calculating the Mean Squared Error (MSE), a common metric for evaluating regression models. This package provides a simple and efficient way to compute MSE for model predictions.\r\n\r\n## Installation\r\n\r\nYou can install **Mean_Squared_Error** using pip:\r\n\r\n```bash\r\npip install Mean_Squared_Error\r\n```\r\n\r\n## Usage\r\n\r\n```python\r\nfrom Mean_Squared_Error import MSE\r\n\r\n# Example usage\r\nresult = MSE([1, 2, 3], [4, 5, 6])\r\nprint(result)\r\n```\r\n\r\n\r\n### MSE(y_true, y_pred)\r\n\r\nCalculates the Mean Squared Error between true values and predicted values.\r\n\r\n**Parameters:**\r\n- `y_true` (list/array): Ground truth values\r\n- `y_pred` (list/array): Predicted values\r\n\r\n**Returns:**\r\n- float: The calculated Mean Squared Error\r\n\r\n## Examples\r\n\r\n```python\r\n# Basic usage\r\ntrue_values = [1, 2, 3, 4, 5]\r\npredicted_values = [1.1, 2.2, 2.9, 4.1, 5.2]\r\nerror = MSE(true_values, predicted_values)\r\nprint(f\"Mean Squared Error: {error}\")\r\n\r\n# Using with numpy arrays\r\nimport numpy as np\r\ny_true = np.array([1.0, 2.0, 3.0])\r\ny_pred = np.array([1.1, 1.9, 3.2])\r\nerror = MSE(y_true, y_pred)\r\nprint(f\"Mean Squared Error: {error}\")\r\n```\r\n\r\n## Contributing\r\n\r\nContributions are welcome! Please feel free to submit a Pull Request.\r\n",
"bugtrack_url": null,
"license": null,
"summary": null,
"version": "0.4.0",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "2d94cd49a813f8647267c8996c3a2a8da44bd0e202fdbc9067f4e58723f2b178",
"md5": "749131f8b61faf7efaa8945f034d7644",
"sha256": "dba8c377ab40f23618476fa29fb921918489045774eafc23b1c5061d8b431299"
},
"downloads": -1,
"filename": "Mean_Squared_Error-0.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "749131f8b61faf7efaa8945f034d7644",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 2233,
"upload_time": "2025-02-23T16:53:02",
"upload_time_iso_8601": "2025-02-23T16:53:02.318561Z",
"url": "https://files.pythonhosted.org/packages/2d/94/cd49a813f8647267c8996c3a2a8da44bd0e202fdbc9067f4e58723f2b178/Mean_Squared_Error-0.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "81a4fa8f5c2c0c3dca18aa5bc4bb30cd467292b9481b7e1e4b34c71cb88ec276",
"md5": "4c165a2b56ea0703c37bad3f10ca0948",
"sha256": "d2aff0f4675aa7aa9f618ba25ebfc7b1314dc1c710913a0b0643ee65b6c079d1"
},
"downloads": -1,
"filename": "mean_squared_error-0.4.0.tar.gz",
"has_sig": false,
"md5_digest": "4c165a2b56ea0703c37bad3f10ca0948",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 1818,
"upload_time": "2025-02-23T16:53:03",
"upload_time_iso_8601": "2025-02-23T16:53:03.739004Z",
"url": "https://files.pythonhosted.org/packages/81/a4/fa8f5c2c0c3dca18aa5bc4bb30cd467292b9481b7e1e4b34c71cb88ec276/mean_squared_error-0.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-23 16:53:03",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "mean-squared-error"
}