Mean-Squared-Error


NameMean-Squared-Error JSON
Version 0.4.0 PyPI version JSON
download
home_pageNone
SummaryNone
upload_time2025-02-23 16:53:03
maintainerNone
docs_urlNone
authorNone
requires_pythonNone
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # MSE - Mean Squared Error Calculation Package

## Overview

**Mean_Squared_Error** is a Python package for calculating the Mean Squared Error (MSE), a common metric for evaluating regression models. This package provides a simple and efficient way to compute MSE for model predictions.

## Installation

You can install **Mean_Squared_Error** using pip:

```bash
pip install Mean_Squared_Error
```

## Usage

```python
from Mean_Squared_Error import MSE

# Example usage
result = MSE([1, 2, 3], [4, 5, 6])
print(result)
```


### MSE(y_true, y_pred)

Calculates the Mean Squared Error between true values and predicted values.

**Parameters:**
- `y_true` (list/array): Ground truth values
- `y_pred` (list/array): Predicted values

**Returns:**
- float: The calculated Mean Squared Error

## Examples

```python
# Basic usage
true_values = [1, 2, 3, 4, 5]
predicted_values = [1.1, 2.2, 2.9, 4.1, 5.2]
error = MSE(true_values, predicted_values)
print(f"Mean Squared Error: {error}")

# Using with numpy arrays
import numpy as np
y_true = np.array([1.0, 2.0, 3.0])
y_pred = np.array([1.1, 1.9, 3.2])
error = MSE(y_true, y_pred)
print(f"Mean Squared Error: {error}")
```

## Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "Mean-Squared-Error",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/81/a4/fa8f5c2c0c3dca18aa5bc4bb30cd467292b9481b7e1e4b34c71cb88ec276/mean_squared_error-0.4.0.tar.gz",
    "platform": null,
    "description": "# MSE - Mean Squared Error Calculation Package\r\n\r\n## Overview\r\n\r\n**Mean_Squared_Error** is a Python package for calculating the Mean Squared Error (MSE), a common metric for evaluating regression models. This package provides a simple and efficient way to compute MSE for model predictions.\r\n\r\n## Installation\r\n\r\nYou can install **Mean_Squared_Error** using pip:\r\n\r\n```bash\r\npip install Mean_Squared_Error\r\n```\r\n\r\n## Usage\r\n\r\n```python\r\nfrom Mean_Squared_Error import MSE\r\n\r\n# Example usage\r\nresult = MSE([1, 2, 3], [4, 5, 6])\r\nprint(result)\r\n```\r\n\r\n\r\n### MSE(y_true, y_pred)\r\n\r\nCalculates the Mean Squared Error between true values and predicted values.\r\n\r\n**Parameters:**\r\n- `y_true` (list/array): Ground truth values\r\n- `y_pred` (list/array): Predicted values\r\n\r\n**Returns:**\r\n- float: The calculated Mean Squared Error\r\n\r\n## Examples\r\n\r\n```python\r\n# Basic usage\r\ntrue_values = [1, 2, 3, 4, 5]\r\npredicted_values = [1.1, 2.2, 2.9, 4.1, 5.2]\r\nerror = MSE(true_values, predicted_values)\r\nprint(f\"Mean Squared Error: {error}\")\r\n\r\n# Using with numpy arrays\r\nimport numpy as np\r\ny_true = np.array([1.0, 2.0, 3.0])\r\ny_pred = np.array([1.1, 1.9, 3.2])\r\nerror = MSE(y_true, y_pred)\r\nprint(f\"Mean Squared Error: {error}\")\r\n```\r\n\r\n## Contributing\r\n\r\nContributions are welcome! Please feel free to submit a Pull Request.\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": null,
    "version": "0.4.0",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2d94cd49a813f8647267c8996c3a2a8da44bd0e202fdbc9067f4e58723f2b178",
                "md5": "749131f8b61faf7efaa8945f034d7644",
                "sha256": "dba8c377ab40f23618476fa29fb921918489045774eafc23b1c5061d8b431299"
            },
            "downloads": -1,
            "filename": "Mean_Squared_Error-0.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "749131f8b61faf7efaa8945f034d7644",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 2233,
            "upload_time": "2025-02-23T16:53:02",
            "upload_time_iso_8601": "2025-02-23T16:53:02.318561Z",
            "url": "https://files.pythonhosted.org/packages/2d/94/cd49a813f8647267c8996c3a2a8da44bd0e202fdbc9067f4e58723f2b178/Mean_Squared_Error-0.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "81a4fa8f5c2c0c3dca18aa5bc4bb30cd467292b9481b7e1e4b34c71cb88ec276",
                "md5": "4c165a2b56ea0703c37bad3f10ca0948",
                "sha256": "d2aff0f4675aa7aa9f618ba25ebfc7b1314dc1c710913a0b0643ee65b6c079d1"
            },
            "downloads": -1,
            "filename": "mean_squared_error-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "4c165a2b56ea0703c37bad3f10ca0948",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 1818,
            "upload_time": "2025-02-23T16:53:03",
            "upload_time_iso_8601": "2025-02-23T16:53:03.739004Z",
            "url": "https://files.pythonhosted.org/packages/81/a4/fa8f5c2c0c3dca18aa5bc4bb30cd467292b9481b7e1e4b34c71cb88ec276/mean_squared_error-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-23 16:53:03",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "mean-squared-error"
}
        
Elapsed time: 1.01200s