# MedShapeNetCore: [[GitHub](https://github.com/Jianningli/medshapenet-feedback/tree/main), [Release page](https://pypi.org/project/MedShapeNetCore/), [Zenodo](https://zenodo.org/records/10423181), [Publication](https://arxiv.org/abs/2308.16139)]
MedShapeNetCore is a subset of [MedShapeNet](https://arxiv.org/abs/2308.16139), containing more lightweight 3D anatomical shapes in the format of mask, point cloud and mesh. The shape data are stored as numpy arrays in nested dictonaries in *npz* format ([Zenodo](https://zenodo.org/records/10423181)).
This API provides means to downloading, accessing and processing the shape data via Python, which integrates MedShapeNetCore seamless into Python-based machine learning workflows.
# Installation (Python >=3.8, [Release page](https://pypi.org/project/MedShapeNetCore/))
pip install MedShapeNetCore
or install from source:
python setup.py install
# Getting started ([](https://colab.research.google.com/github/Jianningli/medshapenet-feedback/blob/main/pip_install_MedShapeNetCore/getting_started.ipynb))
basic commands:
python -m MedShapeNetCore info # check the general information of the dataset
python -m MedShapeNetCore download DATASET # download a dataset (replace DATASETA with the one you want to download e.g., ASOCA)
python -m MedShapeNetCore check_available_keys DATASET # check the available keys of the DATASET
how to import module functions in python:
from MedShapeNetCore.MedShapeNetCore import MyDict,MSNLoader,MSNVisualizer,MSNSaver,MSNTransformer
For more commands and detailed usage, please refer to the colab [notebook](https://colab.research.google.com/github/Jianningli/medshapenet-feedback/blob/main/pip_install_MedShapeNetCore/getting_started.ipynb).
# Use MedShapeNetCore in Machine Learning Workflows (Minimal Reproducible Example)
* 3D Shape Classification with MONAI [](https://colab.research.google.com/github/Jianningli/medshapenet-feedback/blob/main/pip_install_MedShapeNetCore/examples/MONAI_3D_Shape_Classification.ipynb)
* 3D Shape Classification with Tensorflow [](https://colab.research.google.com/github/Jianningli/medshapenet-feedback/blob/main/pip_install_MedShapeNetCore/examples/Tensorflow_3D_Shape_Classification.ipynb)
# Reference
```
@article{li2023medshapenet,
title={MedShapeNet--A Large-Scale Dataset of 3D Medical Shapes for Computer Vision},
author={Li, Jianning and Pepe, Antonio and Gsaxner, Christina and Luijten, Gijs and Jin, Yuan and Ambigapathy, Narmada and Nasca, Enrico and Solak, Naida and Melito, Gian Marco and Memon, Afaque R and others},
journal={arXiv preprint arXiv:2308.16139},
year={2023}}
```
Raw data
{
"_id": null,
"home_page": "https://github.com/Jianningli/medshapenet-feedback/",
"name": "MedShapeNetCore",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8.0",
"maintainer_email": "",
"keywords": "",
"author": "Jianning Li",
"author_email": "jianningli.me@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/47/59/4d4c68d8743d47fd2488835d0086ed1b0af0985d0f772ecdf2087c670db7/MedShapeNetCore-0.1.12.tar.gz",
"platform": null,
"description": "# MedShapeNetCore: [[GitHub](https://github.com/Jianningli/medshapenet-feedback/tree/main), [Release page](https://pypi.org/project/MedShapeNetCore/), [Zenodo](https://zenodo.org/records/10423181), [Publication](https://arxiv.org/abs/2308.16139)]\n\nMedShapeNetCore is a subset of [MedShapeNet](https://arxiv.org/abs/2308.16139), containing more lightweight 3D anatomical shapes in the format of mask, point cloud and mesh. The shape data are stored as numpy arrays in nested dictonaries in *npz* format ([Zenodo](https://zenodo.org/records/10423181)).\nThis API provides means to downloading, accessing and processing the shape data via Python, which integrates MedShapeNetCore seamless into Python-based machine learning workflows.\n\n\n# Installation (Python >=3.8, [Release page](https://pypi.org/project/MedShapeNetCore/)) \n\n pip install MedShapeNetCore\n\nor install from source:\n\n python setup.py install\n \n\n# Getting started ([](https://colab.research.google.com/github/Jianningli/medshapenet-feedback/blob/main/pip_install_MedShapeNetCore/getting_started.ipynb))\n\nbasic commands:\n\n python -m MedShapeNetCore info # check the general information of the dataset \n python -m MedShapeNetCore download DATASET # download a dataset (replace DATASETA with the one you want to download e.g., ASOCA)\n python -m MedShapeNetCore check_available_keys DATASET # check the available keys of the DATASET\n\nhow to import module functions in python:\n\n from MedShapeNetCore.MedShapeNetCore import MyDict,MSNLoader,MSNVisualizer,MSNSaver,MSNTransformer\n \nFor more commands and detailed usage, please refer to the colab [notebook](https://colab.research.google.com/github/Jianningli/medshapenet-feedback/blob/main/pip_install_MedShapeNetCore/getting_started.ipynb).\n\n\n\n# Use MedShapeNetCore in Machine Learning Workflows (Minimal Reproducible Example)\n\n* 3D Shape Classification with MONAI [](https://colab.research.google.com/github/Jianningli/medshapenet-feedback/blob/main/pip_install_MedShapeNetCore/examples/MONAI_3D_Shape_Classification.ipynb)\n* 3D Shape Classification with Tensorflow [](https://colab.research.google.com/github/Jianningli/medshapenet-feedback/blob/main/pip_install_MedShapeNetCore/examples/Tensorflow_3D_Shape_Classification.ipynb)\n\n# Reference\n```\n @article{li2023medshapenet,\n title={MedShapeNet--A Large-Scale Dataset of 3D Medical Shapes for Computer Vision},\n author={Li, Jianning and Pepe, Antonio and Gsaxner, Christina and Luijten, Gijs and Jin, Yuan and Ambigapathy, Narmada and Nasca, Enrico and Solak, Naida and Melito, Gian Marco and Memon, Afaque R and others},\n journal={arXiv preprint arXiv:2308.16139},\n year={2023}}\n```\n\n\n \n",
"bugtrack_url": null,
"license": "Apache-2.0 License",
"summary": "MedShapeNetCore: A Lightweight 3D Repository for Computer Vision and Machine Learning",
"version": "0.1.12",
"project_urls": {
"Homepage": "https://github.com/Jianningli/medshapenet-feedback/"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ab41994685d1b8d48e071854e597cffbeeeec6ceb57e823ea8ac7674cbe9015f",
"md5": "65814af24df547d47f2d4f8f45d8b866",
"sha256": "6df616eadff6ce858820613ef3f694c4971c75f8fed79baf2232ba78d4bb06f9"
},
"downloads": -1,
"filename": "MedShapeNetCore-0.1.12-py3-none-any.whl",
"has_sig": false,
"md5_digest": "65814af24df547d47f2d4f8f45d8b866",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8.0",
"size": 12188,
"upload_time": "2024-02-09T10:07:43",
"upload_time_iso_8601": "2024-02-09T10:07:43.649556Z",
"url": "https://files.pythonhosted.org/packages/ab/41/994685d1b8d48e071854e597cffbeeeec6ceb57e823ea8ac7674cbe9015f/MedShapeNetCore-0.1.12-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "47594d4c68d8743d47fd2488835d0086ed1b0af0985d0f772ecdf2087c670db7",
"md5": "0094d935d89b68e77e80f947817e5eb9",
"sha256": "fc0cb42bd6f83db1a7bcf216fb1f5c0e6e20d357dde34ee40a5af42e64e12ffc"
},
"downloads": -1,
"filename": "MedShapeNetCore-0.1.12.tar.gz",
"has_sig": false,
"md5_digest": "0094d935d89b68e77e80f947817e5eb9",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8.0",
"size": 11164,
"upload_time": "2024-02-09T10:07:45",
"upload_time_iso_8601": "2024-02-09T10:07:45.339653Z",
"url": "https://files.pythonhosted.org/packages/47/59/4d4c68d8743d47fd2488835d0086ed1b0af0985d0f772ecdf2087c670db7/MedShapeNetCore-0.1.12.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-09 10:07:45",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Jianningli",
"github_project": "medshapenet-feedback",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "medshapenetcore"
}