MedShapeNetCore


NameMedShapeNetCore JSON
Version 0.1.12 PyPI version JSON
download
home_pagehttps://github.com/Jianningli/medshapenet-feedback/
SummaryMedShapeNetCore: A Lightweight 3D Repository for Computer Vision and Machine Learning
upload_time2024-02-09 10:07:45
maintainer
docs_urlNone
authorJianning Li
requires_python>=3.8.0
licenseApache-2.0 License
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # MedShapeNetCore: [[GitHub](https://github.com/Jianningli/medshapenet-feedback/tree/main), [Release page](https://pypi.org/project/MedShapeNetCore/), [Zenodo](https://zenodo.org/records/10423181), [Publication](https://arxiv.org/abs/2308.16139)]

MedShapeNetCore is a subset of [MedShapeNet](https://arxiv.org/abs/2308.16139), containing more lightweight 3D anatomical shapes in the format of mask, point cloud and mesh. The shape data are stored as numpy arrays in nested dictonaries in *npz* format ([Zenodo](https://zenodo.org/records/10423181)).
This API provides means to downloading, accessing and processing the shape data via Python, which integrates MedShapeNetCore seamless into Python-based machine learning workflows.


# Installation (Python >=3.8, [Release page](https://pypi.org/project/MedShapeNetCore/)) 

    pip install MedShapeNetCore

or install from source:

    python setup.py install
    

# Getting started ([![](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Jianningli/medshapenet-feedback/blob/main/pip_install_MedShapeNetCore/getting_started.ipynb))

basic commands:

     python -m MedShapeNetCore info  # check the general information of the dataset 
     python -m MedShapeNetCore download DATASET # download a dataset (replace DATASETA with the one you want to download e.g.,  ASOCA)
     python -m MedShapeNetCore check_available_keys DATASET # check the available keys of the DATASET

how to import module functions in python:

     from MedShapeNetCore.MedShapeNetCore import MyDict,MSNLoader,MSNVisualizer,MSNSaver,MSNTransformer
     
For more commands and detailed usage, please refer to the colab [notebook](https://colab.research.google.com/github/Jianningli/medshapenet-feedback/blob/main/pip_install_MedShapeNetCore/getting_started.ipynb).



# Use MedShapeNetCore in Machine Learning Workflows (Minimal Reproducible Example)

* 3D Shape Classification with MONAI [![](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Jianningli/medshapenet-feedback/blob/main/pip_install_MedShapeNetCore/examples/MONAI_3D_Shape_Classification.ipynb)
* 3D Shape Classification with Tensorflow [![](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Jianningli/medshapenet-feedback/blob/main/pip_install_MedShapeNetCore/examples/Tensorflow_3D_Shape_Classification.ipynb)

# Reference
```
    @article{li2023medshapenet,
         title={MedShapeNet--A Large-Scale Dataset of 3D Medical Shapes for Computer Vision},
         author={Li, Jianning and Pepe, Antonio and Gsaxner, Christina and Luijten, Gijs and Jin, Yuan and Ambigapathy, Narmada and Nasca, Enrico and Solak, Naida and Melito, Gian Marco and Memon, Afaque R and others},
         journal={arXiv preprint arXiv:2308.16139},
         year={2023}}
```


     

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Jianningli/medshapenet-feedback/",
    "name": "MedShapeNetCore",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8.0",
    "maintainer_email": "",
    "keywords": "",
    "author": "Jianning Li",
    "author_email": "jianningli.me@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/47/59/4d4c68d8743d47fd2488835d0086ed1b0af0985d0f772ecdf2087c670db7/MedShapeNetCore-0.1.12.tar.gz",
    "platform": null,
    "description": "# MedShapeNetCore: [[GitHub](https://github.com/Jianningli/medshapenet-feedback/tree/main), [Release page](https://pypi.org/project/MedShapeNetCore/), [Zenodo](https://zenodo.org/records/10423181), [Publication](https://arxiv.org/abs/2308.16139)]\n\nMedShapeNetCore is a subset of [MedShapeNet](https://arxiv.org/abs/2308.16139), containing more lightweight 3D anatomical shapes in the format of mask, point cloud and mesh. The shape data are stored as numpy arrays in nested dictonaries in *npz* format ([Zenodo](https://zenodo.org/records/10423181)).\nThis API provides means to downloading, accessing and processing the shape data via Python, which integrates MedShapeNetCore seamless into Python-based machine learning workflows.\n\n\n# Installation (Python >=3.8, [Release page](https://pypi.org/project/MedShapeNetCore/)) \n\n    pip install MedShapeNetCore\n\nor install from source:\n\n    python setup.py install\n    \n\n# Getting started ([![](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Jianningli/medshapenet-feedback/blob/main/pip_install_MedShapeNetCore/getting_started.ipynb))\n\nbasic commands:\n\n     python -m MedShapeNetCore info  # check the general information of the dataset \n     python -m MedShapeNetCore download DATASET # download a dataset (replace DATASETA with the one you want to download e.g.,  ASOCA)\n     python -m MedShapeNetCore check_available_keys DATASET # check the available keys of the DATASET\n\nhow to import module functions in python:\n\n     from MedShapeNetCore.MedShapeNetCore import MyDict,MSNLoader,MSNVisualizer,MSNSaver,MSNTransformer\n     \nFor more commands and detailed usage, please refer to the colab [notebook](https://colab.research.google.com/github/Jianningli/medshapenet-feedback/blob/main/pip_install_MedShapeNetCore/getting_started.ipynb).\n\n\n\n# Use MedShapeNetCore in Machine Learning Workflows (Minimal Reproducible Example)\n\n* 3D Shape Classification with MONAI [![](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Jianningli/medshapenet-feedback/blob/main/pip_install_MedShapeNetCore/examples/MONAI_3D_Shape_Classification.ipynb)\n* 3D Shape Classification with Tensorflow [![](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Jianningli/medshapenet-feedback/blob/main/pip_install_MedShapeNetCore/examples/Tensorflow_3D_Shape_Classification.ipynb)\n\n# Reference\n```\n    @article{li2023medshapenet,\n         title={MedShapeNet--A Large-Scale Dataset of 3D Medical Shapes for Computer Vision},\n         author={Li, Jianning and Pepe, Antonio and Gsaxner, Christina and Luijten, Gijs and Jin, Yuan and Ambigapathy, Narmada and Nasca, Enrico and Solak, Naida and Melito, Gian Marco and Memon, Afaque R and others},\n         journal={arXiv preprint arXiv:2308.16139},\n         year={2023}}\n```\n\n\n     \n",
    "bugtrack_url": null,
    "license": "Apache-2.0 License",
    "summary": "MedShapeNetCore: A Lightweight 3D Repository for Computer Vision and Machine Learning",
    "version": "0.1.12",
    "project_urls": {
        "Homepage": "https://github.com/Jianningli/medshapenet-feedback/"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ab41994685d1b8d48e071854e597cffbeeeec6ceb57e823ea8ac7674cbe9015f",
                "md5": "65814af24df547d47f2d4f8f45d8b866",
                "sha256": "6df616eadff6ce858820613ef3f694c4971c75f8fed79baf2232ba78d4bb06f9"
            },
            "downloads": -1,
            "filename": "MedShapeNetCore-0.1.12-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "65814af24df547d47f2d4f8f45d8b866",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8.0",
            "size": 12188,
            "upload_time": "2024-02-09T10:07:43",
            "upload_time_iso_8601": "2024-02-09T10:07:43.649556Z",
            "url": "https://files.pythonhosted.org/packages/ab/41/994685d1b8d48e071854e597cffbeeeec6ceb57e823ea8ac7674cbe9015f/MedShapeNetCore-0.1.12-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "47594d4c68d8743d47fd2488835d0086ed1b0af0985d0f772ecdf2087c670db7",
                "md5": "0094d935d89b68e77e80f947817e5eb9",
                "sha256": "fc0cb42bd6f83db1a7bcf216fb1f5c0e6e20d357dde34ee40a5af42e64e12ffc"
            },
            "downloads": -1,
            "filename": "MedShapeNetCore-0.1.12.tar.gz",
            "has_sig": false,
            "md5_digest": "0094d935d89b68e77e80f947817e5eb9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8.0",
            "size": 11164,
            "upload_time": "2024-02-09T10:07:45",
            "upload_time_iso_8601": "2024-02-09T10:07:45.339653Z",
            "url": "https://files.pythonhosted.org/packages/47/59/4d4c68d8743d47fd2488835d0086ed1b0af0985d0f772ecdf2087c670db7/MedShapeNetCore-0.1.12.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-09 10:07:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Jianningli",
    "github_project": "medshapenet-feedback",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "medshapenetcore"
}
        
Elapsed time: 0.73672s