MetEvolSim


NameMetEvolSim JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/charlesrocabert/MetEvolSim
SummaryMetEvolSim (Metabolome Evolution Simulator) Python Package
upload_time2023-09-23 09:55:41
maintainer
docs_urlNone
authorCharles Rocabert, Gábor Boross, Orsolya Liska, Balázs Papp
requires_python>=3
licenseGNU General Public License v3 (GPLv3)
keywords simulation evolution systems-biology sbml copasi metabolism metabolome abundances metabolic-network kinetic-model evolution-rate
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
    <img src="https://github.com/charlesrocabert/MetEvolSim/raw/master/pic/metevolsim_logo.png" width=300>
</p>
<p align="center">
    <em>Metabolome Evolution Simulator</em>
    <br/><br/>
    A Python package to simulate the long-term evolution of metabolic levels.
    <br/><br/>
    <a href="https://badge.fury.io/py/MetEvolSim"><img src="https://badge.fury.io/py/MetEvolSim.svg" alt="PyPI version" height="18"></a>
    <a href="https://github.com/charlesrocabert/MetEvolSim/actions"><img src="https://github.com/charlesrocabert/MetEvolSim/workflows/Upload Python Package/badge.svg" /></a>&nbsp;
    <a href="https://github.com/charlesrocabert/MetEvolSim/LICENSE.html"><img src="https://img.shields.io/badge/License-GPLv3-blue.svg" /></a>
</p>

-----------------

<p align="justify">
MetEvolSim (<em>Metabolome Evolution Simulator</em>) is a Python package which provides numerical tools to simulate the long-term evolution of metabolic abundances in kinetic models of metabolic network.
To use MetEvolSim, a <a href="http://sbml.org/Main_Page" target="_blank">SBML-formatted</a> metabolic network model is required, along with kinetic parameters and initial metabolic concentrations.
Additionally, the model must reach a stable steady-state, which is computed with <a href="http://copasi.org/" target="_blank">Copasi</a> software.
</p>

<p align="justify">
MetEvolSim is being developed by Charles Rocabert, Gábor Boross, Orsolya Liska and Balázs Papp.
</p>

<p align="justify">
If you are planning to use MetEvolSim for research or have encountered any issues with the software, do not hesitate to contact <a href="mailto:charles[DOT]rocabert[AT]hhu[DOT]de">Charles Rocabert</a>.
</p>

<p align="center">
<img src="https://github.com/charlesrocabert/MetEvolSim/raw/master/pic/BRC_logo.png" height="100px"></a>&nbsp;&nbsp;&nbsp;<img src="https://github.com/charlesrocabert/MetEvolSim/raw/master/pic/MTA_logo.png" height="100px"></a>
</p>

## Table of contents
- [Publications](#publications)
- [Dependencies](#dependencies)
- [Installation](#installation)
- [First usage](#first_usage)
- [Help](#help)
- [Ready-to-use examples](#examples)
- [List of tested metabolic models](#tested_models)
- [Copyright](#copyright)
- [License](#license)

## Publications <a name="publications"></a>
- O. Liska, G. Boross, C. Rocabert, B. Szappanos, R. Tengölics, B. Papp. Principles of metabolome conservation in animals. <em>Proceedings of the National Academy of Sciences</em> 120 (35), e2302147120 (2023) (https://doi.org/10.1073/pnas.2302147120).

## Dependencies <a name="dependencies"></a>
- Python &ge; 3,
- Numpy &ge; 1.21 (automatically installed when using pip),
- Python-libsbml &ge; 5.19 (automatically installed when using pip),
- NetworkX &ge; 2.6 (automatically installed when using pip),
- CopasiSE &ge; 4.27 (to be installed separately),
- pip &ge; 21.3.1 (optional).

## Installation <a name="installation"></a>
&bullet; To install Copasi software, visit http://copasi.org/ and download the command line version CopasiSE.

&bullet; To install the latest release of MetEvolSim:
```shell
pip install MetEvolSim
```

Alternatively, download the <a href="https://github.com/charlesrocabert/MetEvolSim/releases/latest">latest release</a> in the folder of your choice and unzip it. Then follow the instructions below:
```shell
# Navigate to the MetEvolSim folder
cd /path/to/MetEvolSim

# Install MetEvolSim Python package
python3 setup.py install
```

## First usage <a name="first_usage"></a>
MetEvolSim has been tested with numerous publicly accessible metabolic networks; however, we cannot guarantee that it will be compatible with any model (please refer to the [list of tested metabolic models](#tested_models)).
The package includes the class <code>Model</code> to manipulate SBML models. Additionally, it is necessary to set up an objective function (a list of target reactions and their coefficients) and to provide the path of <a href="http://copasi.org/">CopasiSE</a> software. Please note that objective function coefficients are not operational in the current version of MetEvolSim.

```python
# Import MetEvolSim package
import metevolsim

# Create an objective function
target_fluxes = [['ATPase', 1.0], ['PDC', 1.0]]

# Load the SBML metabolic model
model = metevolsim.Model(sbml_filename='glycolysis.xml',
                         objective_function=target_fluxes,
                         copasi_path='/Applications/COPASI/CopasiSE')

# Print some informations on the metabolic model
print(model.get_number_of_species())
print(model.get_wild_type_species_value('Glc'))

# Get a kinetic parameter at random
param = model.get_random_parameter()
print(param)

# Mutate this kinetic parameter with a log-scale mutation size 0.01
model.random_parameter_mutation(param, sigma=0.01)

# Compute wild-type and mutant steady-states
model.compute_wild_type_steady_state()
model.compute_mutant_steady_state()

# Run a metabolic control analysis on the wild-type
model.compute_wild_type_metabolic_control_analysis()
# This function will output two datasets:
# - output/wild_type_MCA_unscaled.txt containing unscaled control coefficients,
# - output/wild_type_MCA_scaled.txt containing scaled control coefficients.

# Compute all pairwise metabolite shortest paths
model.build_species_graph()
model.save_shortest_paths(filename="glycolysis_shortest_paths.txt")

# Compute a flux drop analysis to measure the contribution of each flux to the fitness
# (in this example, each flux is dropped at 1% of its original value)
model.flux_drop_analysis(drop_coefficient=0.01,
                         filename="flux_drop_analysis.txt",
                         owerwrite=True)
```

MetEvolSim offers two distinct numerical approaches for assessing the evolution of metabolic abundances:
- <strong>Evolution experiments</strong>, based on a Markov Chain Monte Carlo (MCMC) algorithm,
 <strong>Sensitivity analysis</strong>, that can either explore every kinetic parameter in a given range and record changes in associated fluxes and metabolic abundances (One-At-a-Time sensitivity analysis) or randomly explore the kinetic parameter space by randomly mutating a single kinetic parameter multiple times (random sensitivity analysis).

All numerical analysis output files are saved in the <code>output</code> subfolder.

### Evolution experiments:
<p align="center">
<img src="https://github.com/charlesrocabert/MetEvolSim/raw/master/pic/mcmc_algorithm.png">
</p>
<p align="justify">
<strong>Algorithm overview:</strong> <strong>A.</strong> The model of interest is loaded as a wild-type from a SBML file (kinetic equations, kinetic parameter values and initial metabolic concentrations must be specified). <strong>B.</strong> At each iteration <em>t</em>, a single kinetic parameter is selected at random and mutated through a log10-normal distribution of standard deviation &sigma;. <strong>C.</strong> The new steady-state is computed using Copasi software, and the MOMA distance <em>z</em> between the mutant and the wild-type target fluxes is computed. <strong>D.</strong> If <em>z</em> is under a given selection threshold &omega;, the mutation is accepted. Else, the mutation is discarded. <strong>E.</strong> A new iteration <em>t+1</em> is computed.
</p>

<br/>
There are six types of selection available:

- <code>MUTATION_ACCUMULATION</code>: Run a mutation accumulation experiment by accepting all new mutations without any selection threshold,
- <code>ABSOLUTE_METABOLIC_SUM_SELECTION</code>: Run an evolution experiment by applying a stabilizing selection on the sum of absolute metabolic abundances,
- <code>ABSOLUTE_TARGET_FLUXES_SELECTION</code>: Run an evolution experiment by applying a stabilizing selection on the MOMA distance of absolute target fluxes,
- <code>RELATIVE_TARGET_FLUXES_SELECTION</code>: Run an evolution experiment by applying a stabilizing selection on the MOMA distance of relative target fluxes.

```python
# Load a Markov Chain Monte Carlo (MCMC) instance
mcmc = metevolsim.MCMC(sbml_filename='glycolysis.xml',
                       objective_function=target_fluxes,
                       total_iterations=10000,
                       sigma=0.01,
                       selection_scheme="MUTATION_ACCUMULATION",
                       selection_threshold=1e-4,
                       copasi_path='/Applications/COPASI/CopasiSE')

# Initialize the MCMC instance
mcmc.initialize()

# Compute the successive iterations and write output files
stop_MCMC = False
while not stop_MCMC:
    stop_mcmc = mcmc.iterate()
    mcmc.write_output_file()
    mcmc.write_statistics()
```

### One-At-a-Time (OAT) sensitivity analysis:
For each kinetic parameter p, each metabolic abundance [X<sub>i</sub>] and each flux &nu;<sub>j</sub>, the algorithm numerically computes relative derivatives and control coefficients.

```python
# Load a sensitivity analysis instance
sa = metevolsim.SensitivityAnalysis(sbml_filename='glycolysis.xml',
                                    copasi_path='/Applications/COPASI/CopasiSE')

# Run the full OAT sensitivity analysis
sa.run_OAT_analysis(factor_range=1.0, factor_step=0.01)
```

### Random sensitivity analysis:
At each iteration, a single kinetic parameter p is mutated at random in a log10-normal distribution of size &sigma;, and relative derivatives and control coefficients are computed.

```python
# Load a sensitivity analysis instance
sa = metevolsim.SensitivityAnalysis(sbml_filename='glycolysis.xml',
                                    copasi_path='/Applications/COPASI/CopasiSE')

# Run the full OAT sensitivity analysis
sa.run_random_analysis(sigma=0.01, nb_iterations=1000)
```

## Help <a name="help"></a>
To get assistance with a MetEvolSim class or method, use the Python help function:
```python
help(metevolsim.Model.set_species_initial_value)
```
To get a brief overview and a list of parameters and outputs:
```
Help on function set_species_initial_value in module metevolsim:

set_species_initial_value(self, species_id, value)
    Set the initial concentration of the species 'species_id' in the
    mutant model.

    Parameters
    ----------
    species_id: str
            Species identifier (as defined in the SBML model).
    value: float >= 0.0
            Species abundance.

    Returns
    -------
    None
(END)
```

## Ready-to-use examples <a name="examples"></a>
Ready-to-use examples come pre-packaged with MetEvolSim package.
They can also be downloaded here: https://github.com/charlesrocabert/MetEvolSim/raw/master/example/example.zip.

## List of tested metabolic models <a name="tested_models"></a>

| **Reference**           | **Model**                            | **Running with MetEvolSim** |
|-------------------------|--------------------------------------|-----------------------------|
| Bakker et al. (1997)    | _Trypanosoma brucei_ glycolysis      | :x:                         |
| Curto et al. (1998)     | Human purine metabolism              | :x:                         |
| Mulquiney et al. (1999) | Human erythrocyte                    | :white_check_mark:          |
| Jamshidi et al. (2001)  | Red blood cell                       | :x:                         |
| Bali et al. (2001)      | Red blood cell glycolysis            | :white_check_mark:          |
| Lambeth et al. (2002)   | Skeletal muscle glycogenolysis       | :white_check_mark:          |
| Holzhutter et al. (2004)| Human erythrocyte                    | :white_check_mark:          |
| Beard et al. (2005)     | Mitochondrial respiration            | :x:                         |
| Banaji et al. (2005)    | Cerebral blood flood control         | :white_check_mark:          |
| Bertram et al. (2006)   | Mitochondrial ATP production         | :x:                         |
| Bruck et al. (2008)     | Yeast glycolysis                     | :white_check_mark:          |
| Reed et al. (2008)      | Glutathione metabolism               | :x:                         |
| Curien et al. (2009)    | Aspartame metabolism                 | :x:                         |
| Jerby et al. (2010)     | Human liver metabolism               | :x:                         |
| Li et al. (2010)        | Yeast glycolysis                     | :x:                         |
| Bekaert et al. (2010)   | Mouse metabolism reconstruction      | :x:                         |
| Bordbar et al. (2011)   | Human multi-tissues                  | :x:                         |
| Koenig et al. (2012)    | Hepatocyte glucose metabolism        | :white_check_mark:          |
| Messiha et al. (2013)   | Yeast glycolysis + pentose phosphate | :white_check_mark:          |
| Mitchell et al. (2013)  | Liver iron metabolism                | :x:                         |
| Stanford et al. (2013)  | Yeast whole cell model               | :x:                         |
| Bordbar et al. (2015)   | Red blood cell                       | :x:                         |
| Costa et al. (2016)     | _E. coli_ core metabolism            | :white_check_mark:          |
| Millard et al. (2016)   | _E. coli_ core metabolism            | :white_check_mark:          |
| Bulik et al. (2016)     | Hepatic glucose metabolism           | :white_check_mark:          |

## Copyright <a name="copyright"></a>
Copyright &copy; 2018-2023 Charles Rocabert, Gábor Boross, Orsolya Liska and Balázs Papp.
All rights reserved.

## License <a name="license"></a>
<p align="justify">
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
</p>

<p align="justify">
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
</p>

<p align="justify">
You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.
</p>

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/charlesrocabert/MetEvolSim",
    "name": "MetEvolSim",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": "",
    "keywords": "simulation evolution systems-biology sbml copasi metabolism metabolome abundances metabolic-network kinetic-model evolution-rate",
    "author": "Charles Rocabert, G\u00e1bor Boross, Orsolya Liska, Bal\u00e1zs Papp",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/2c/b0/6c4e91d8b30dce0a186b75bd7bd6f0c3bb1c0f7a0715eb724b60dc00f4fd/MetEvolSim-1.0.0.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n    <img src=\"https://github.com/charlesrocabert/MetEvolSim/raw/master/pic/metevolsim_logo.png\" width=300>\n</p>\n<p align=\"center\">\n    <em>Metabolome Evolution Simulator</em>\n    <br/><br/>\n    A Python package to simulate the long-term evolution of metabolic levels.\n    <br/><br/>\n    <a href=\"https://badge.fury.io/py/MetEvolSim\"><img src=\"https://badge.fury.io/py/MetEvolSim.svg\" alt=\"PyPI version\" height=\"18\"></a>\n    <a href=\"https://github.com/charlesrocabert/MetEvolSim/actions\"><img src=\"https://github.com/charlesrocabert/MetEvolSim/workflows/Upload Python Package/badge.svg\" /></a>&nbsp;\n    <a href=\"https://github.com/charlesrocabert/MetEvolSim/LICENSE.html\"><img src=\"https://img.shields.io/badge/License-GPLv3-blue.svg\" /></a>\n</p>\n\n-----------------\n\n<p align=\"justify\">\nMetEvolSim (<em>Metabolome Evolution Simulator</em>) is a Python package which provides numerical tools to simulate the long-term evolution of metabolic abundances in kinetic models of metabolic network.\nTo use MetEvolSim, a <a href=\"http://sbml.org/Main_Page\" target=\"_blank\">SBML-formatted</a> metabolic network model is required, along with kinetic parameters and initial metabolic concentrations.\nAdditionally, the model must reach a stable steady-state, which is computed with <a href=\"http://copasi.org/\" target=\"_blank\">Copasi</a> software.\n</p>\n\n<p align=\"justify\">\nMetEvolSim is being developed by Charles Rocabert, G\u00e1bor Boross, Orsolya Liska and Bal\u00e1zs Papp.\n</p>\n\n<p align=\"justify\">\nIf you are planning to use MetEvolSim for research or have encountered any issues with the software, do not hesitate to contact <a href=\"mailto:charles[DOT]rocabert[AT]hhu[DOT]de\">Charles Rocabert</a>.\n</p>\n\n<p align=\"center\">\n<img src=\"https://github.com/charlesrocabert/MetEvolSim/raw/master/pic/BRC_logo.png\" height=\"100px\"></a>&nbsp;&nbsp;&nbsp;<img src=\"https://github.com/charlesrocabert/MetEvolSim/raw/master/pic/MTA_logo.png\" height=\"100px\"></a>\n</p>\n\n## Table of contents\n- [Publications](#publications)\n- [Dependencies](#dependencies)\n- [Installation](#installation)\n- [First usage](#first_usage)\n- [Help](#help)\n- [Ready-to-use examples](#examples)\n- [List of tested metabolic models](#tested_models)\n- [Copyright](#copyright)\n- [License](#license)\n\n## Publications <a name=\"publications\"></a>\n- O. Liska, G. Boross, C. Rocabert, B. Szappanos, R. Teng\u00f6lics, B. Papp. Principles of metabolome conservation in animals. <em>Proceedings of the National Academy of Sciences</em> 120 (35), e2302147120 (2023) (https://doi.org/10.1073/pnas.2302147120).\n\n## Dependencies <a name=\"dependencies\"></a>\n- Python &ge; 3,\n- Numpy &ge; 1.21 (automatically installed when using pip),\n- Python-libsbml &ge; 5.19 (automatically installed when using pip),\n- NetworkX &ge; 2.6 (automatically installed when using pip),\n- CopasiSE &ge; 4.27 (to be installed separately),\n- pip &ge; 21.3.1 (optional).\n\n## Installation <a name=\"installation\"></a>\n&bullet; To install Copasi software, visit http://copasi.org/ and download the command line version CopasiSE.\n\n&bullet; To install the latest release of MetEvolSim:\n```shell\npip install MetEvolSim\n```\n\nAlternatively, download the <a href=\"https://github.com/charlesrocabert/MetEvolSim/releases/latest\">latest release</a> in the folder of your choice and unzip it. Then follow the instructions below:\n```shell\n# Navigate to the MetEvolSim folder\ncd /path/to/MetEvolSim\n\n# Install MetEvolSim Python package\npython3 setup.py install\n```\n\n## First usage <a name=\"first_usage\"></a>\nMetEvolSim has been tested with numerous publicly accessible metabolic networks; however, we cannot guarantee that it will be compatible with any model (please refer to the [list of tested metabolic models](#tested_models)).\nThe package includes the class <code>Model</code> to manipulate SBML models. Additionally, it is necessary to set up an objective function (a list of target reactions and their coefficients) and to provide the path of <a href=\"http://copasi.org/\">CopasiSE</a> software. Please note that objective function coefficients are not operational in the current version of MetEvolSim.\n\n```python\n# Import MetEvolSim package\nimport metevolsim\n\n# Create an objective function\ntarget_fluxes = [['ATPase', 1.0], ['PDC', 1.0]]\n\n# Load the SBML metabolic model\nmodel = metevolsim.Model(sbml_filename='glycolysis.xml',\n                         objective_function=target_fluxes,\n                         copasi_path='/Applications/COPASI/CopasiSE')\n\n# Print some informations on the metabolic model\nprint(model.get_number_of_species())\nprint(model.get_wild_type_species_value('Glc'))\n\n# Get a kinetic parameter at random\nparam = model.get_random_parameter()\nprint(param)\n\n# Mutate this kinetic parameter with a log-scale mutation size 0.01\nmodel.random_parameter_mutation(param, sigma=0.01)\n\n# Compute wild-type and mutant steady-states\nmodel.compute_wild_type_steady_state()\nmodel.compute_mutant_steady_state()\n\n# Run a metabolic control analysis on the wild-type\nmodel.compute_wild_type_metabolic_control_analysis()\n# This function will output two datasets:\n# - output/wild_type_MCA_unscaled.txt containing unscaled control coefficients,\n# - output/wild_type_MCA_scaled.txt containing scaled control coefficients.\n\n# Compute all pairwise metabolite shortest paths\nmodel.build_species_graph()\nmodel.save_shortest_paths(filename=\"glycolysis_shortest_paths.txt\")\n\n# Compute a flux drop analysis to measure the contribution of each flux to the fitness\n# (in this example, each flux is dropped at 1% of its original value)\nmodel.flux_drop_analysis(drop_coefficient=0.01,\n                         filename=\"flux_drop_analysis.txt\",\n                         owerwrite=True)\n```\n\nMetEvolSim offers two distinct numerical approaches for assessing the evolution of metabolic abundances:\n- <strong>Evolution experiments</strong>, based on a Markov Chain Monte Carlo (MCMC) algorithm,\n <strong>Sensitivity analysis</strong>, that can either explore every kinetic parameter in a given range and record changes in associated fluxes and metabolic abundances (One-At-a-Time sensitivity analysis) or randomly explore the kinetic parameter space by randomly mutating a single kinetic parameter multiple times (random sensitivity analysis).\n\nAll numerical analysis output files are saved in the <code>output</code> subfolder.\n\n### Evolution experiments:\n<p align=\"center\">\n<img src=\"https://github.com/charlesrocabert/MetEvolSim/raw/master/pic/mcmc_algorithm.png\">\n</p>\n<p align=\"justify\">\n<strong>Algorithm overview:</strong> <strong>A.</strong> The model of interest is loaded as a wild-type from a SBML file (kinetic equations, kinetic parameter values and initial metabolic concentrations must be specified). <strong>B.</strong> At each iteration <em>t</em>, a single kinetic parameter is selected at random and mutated through a log10-normal distribution of standard deviation &sigma;. <strong>C.</strong> The new steady-state is computed using Copasi software, and the MOMA distance <em>z</em> between the mutant and the wild-type target fluxes is computed. <strong>D.</strong> If <em>z</em> is under a given selection threshold &omega;, the mutation is accepted. Else, the mutation is discarded. <strong>E.</strong> A new iteration <em>t+1</em> is computed.\n</p>\n\n<br/>\nThere are six types of selection available:\n\n- <code>MUTATION_ACCUMULATION</code>: Run a mutation accumulation experiment by accepting all new mutations without any selection threshold,\n- <code>ABSOLUTE_METABOLIC_SUM_SELECTION</code>: Run an evolution experiment by applying a stabilizing selection on the sum of absolute metabolic abundances,\n- <code>ABSOLUTE_TARGET_FLUXES_SELECTION</code>: Run an evolution experiment by applying a stabilizing selection on the MOMA distance of absolute target fluxes,\n- <code>RELATIVE_TARGET_FLUXES_SELECTION</code>: Run an evolution experiment by applying a stabilizing selection on the MOMA distance of relative target fluxes.\n\n```python\n# Load a Markov Chain Monte Carlo (MCMC) instance\nmcmc = metevolsim.MCMC(sbml_filename='glycolysis.xml',\n                       objective_function=target_fluxes,\n                       total_iterations=10000,\n                       sigma=0.01,\n                       selection_scheme=\"MUTATION_ACCUMULATION\",\n                       selection_threshold=1e-4,\n                       copasi_path='/Applications/COPASI/CopasiSE')\n\n# Initialize the MCMC instance\nmcmc.initialize()\n\n# Compute the successive iterations and write output files\nstop_MCMC = False\nwhile not stop_MCMC:\n    stop_mcmc = mcmc.iterate()\n    mcmc.write_output_file()\n    mcmc.write_statistics()\n```\n\n### One-At-a-Time (OAT) sensitivity analysis:\nFor each kinetic parameter p, each metabolic abundance [X<sub>i</sub>] and each flux &nu;<sub>j</sub>, the algorithm numerically computes relative derivatives and control coefficients.\n\n```python\n# Load a sensitivity analysis instance\nsa = metevolsim.SensitivityAnalysis(sbml_filename='glycolysis.xml',\n                                    copasi_path='/Applications/COPASI/CopasiSE')\n\n# Run the full OAT sensitivity analysis\nsa.run_OAT_analysis(factor_range=1.0, factor_step=0.01)\n```\n\n### Random sensitivity analysis:\nAt each iteration, a single kinetic parameter p is mutated at random in a log10-normal distribution of size &sigma;, and relative derivatives and control coefficients are computed.\n\n```python\n# Load a sensitivity analysis instance\nsa = metevolsim.SensitivityAnalysis(sbml_filename='glycolysis.xml',\n                                    copasi_path='/Applications/COPASI/CopasiSE')\n\n# Run the full OAT sensitivity analysis\nsa.run_random_analysis(sigma=0.01, nb_iterations=1000)\n```\n\n## Help <a name=\"help\"></a>\nTo get assistance with a MetEvolSim class or method, use the Python help function:\n```python\nhelp(metevolsim.Model.set_species_initial_value)\n```\nTo get a brief overview and a list of parameters and outputs:\n```\nHelp on function set_species_initial_value in module metevolsim:\n\nset_species_initial_value(self, species_id, value)\n    Set the initial concentration of the species 'species_id' in the\n    mutant model.\n\n    Parameters\n    ----------\n    species_id: str\n            Species identifier (as defined in the SBML model).\n    value: float >= 0.0\n            Species abundance.\n\n    Returns\n    -------\n    None\n(END)\n```\n\n## Ready-to-use examples <a name=\"examples\"></a>\nReady-to-use examples come pre-packaged with MetEvolSim package.\nThey can also be downloaded here: https://github.com/charlesrocabert/MetEvolSim/raw/master/example/example.zip.\n\n## List of tested metabolic models <a name=\"tested_models\"></a>\n\n| **Reference**           | **Model**                            | **Running with MetEvolSim** |\n|-------------------------|--------------------------------------|-----------------------------|\n| Bakker et al. (1997)    | _Trypanosoma brucei_ glycolysis      | :x:                         |\n| Curto et al. (1998)     | Human purine metabolism              | :x:                         |\n| Mulquiney et al. (1999) | Human erythrocyte                    | :white_check_mark:          |\n| Jamshidi et al. (2001)  | Red blood cell                       | :x:                         |\n| Bali et al. (2001)      | Red blood cell glycolysis            | :white_check_mark:          |\n| Lambeth et al. (2002)   | Skeletal muscle glycogenolysis       | :white_check_mark:          |\n| Holzhutter et al. (2004)| Human erythrocyte                    | :white_check_mark:          |\n| Beard et al. (2005)     | Mitochondrial respiration            | :x:                         |\n| Banaji et al. (2005)    | Cerebral blood flood control         | :white_check_mark:          |\n| Bertram et al. (2006)   | Mitochondrial ATP production         | :x:                         |\n| Bruck et al. (2008)     | Yeast glycolysis                     | :white_check_mark:          |\n| Reed et al. (2008)      | Glutathione metabolism               | :x:                         |\n| Curien et al. (2009)    | Aspartame metabolism                 | :x:                         |\n| Jerby et al. (2010)     | Human liver metabolism               | :x:                         |\n| Li et al. (2010)        | Yeast glycolysis                     | :x:                         |\n| Bekaert et al. (2010)   | Mouse metabolism reconstruction      | :x:                         |\n| Bordbar et al. (2011)   | Human multi-tissues                  | :x:                         |\n| Koenig et al. (2012)    | Hepatocyte glucose metabolism        | :white_check_mark:          |\n| Messiha et al. (2013)   | Yeast glycolysis + pentose phosphate | :white_check_mark:          |\n| Mitchell et al. (2013)  | Liver iron metabolism                | :x:                         |\n| Stanford et al. (2013)  | Yeast whole cell model               | :x:                         |\n| Bordbar et al. (2015)   | Red blood cell                       | :x:                         |\n| Costa et al. (2016)     | _E. coli_ core metabolism            | :white_check_mark:          |\n| Millard et al. (2016)   | _E. coli_ core metabolism            | :white_check_mark:          |\n| Bulik et al. (2016)     | Hepatic glucose metabolism           | :white_check_mark:          |\n\n## Copyright <a name=\"copyright\"></a>\nCopyright &copy; 2018-2023 Charles Rocabert, G\u00e1bor Boross, Orsolya Liska and Bal\u00e1zs Papp.\nAll rights reserved.\n\n## License <a name=\"license\"></a>\n<p align=\"justify\">\nThis program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.\n</p>\n\n<p align=\"justify\">\nThis program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.\n</p>\n\n<p align=\"justify\">\nYou should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.\n</p>\n",
    "bugtrack_url": null,
    "license": "GNU General Public License v3 (GPLv3)",
    "summary": "MetEvolSim (Metabolome Evolution Simulator) Python Package",
    "version": "1.0.0",
    "project_urls": {
        "Homepage": "https://github.com/charlesrocabert/MetEvolSim",
        "Source": "https://github.com/charlesrocabert/MetEvolSim"
    },
    "split_keywords": [
        "simulation",
        "evolution",
        "systems-biology",
        "sbml",
        "copasi",
        "metabolism",
        "metabolome",
        "abundances",
        "metabolic-network",
        "kinetic-model",
        "evolution-rate"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "90e34791c5e5997bb90aa279928121d8b7db871f50ca4cb32fe442203ffb015e",
                "md5": "3c3d1b32eaa4231f446b755c169e4b4a",
                "sha256": "a1c6b7f409d0bf965e6fe44c732501271ac631f1f8828f816f82e09db6234476"
            },
            "downloads": -1,
            "filename": "MetEvolSim-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3c3d1b32eaa4231f446b755c169e4b4a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3",
            "size": 35074,
            "upload_time": "2023-09-23T09:55:39",
            "upload_time_iso_8601": "2023-09-23T09:55:39.345356Z",
            "url": "https://files.pythonhosted.org/packages/90/e3/4791c5e5997bb90aa279928121d8b7db871f50ca4cb32fe442203ffb015e/MetEvolSim-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2cb06c4e91d8b30dce0a186b75bd7bd6f0c3bb1c0f7a0715eb724b60dc00f4fd",
                "md5": "df451cc69acb95627052149aaec4d5f3",
                "sha256": "ab9513750aedd3010ca0697cd27e4204b64430037ef938b34269d201d94c0fb9"
            },
            "downloads": -1,
            "filename": "MetEvolSim-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "df451cc69acb95627052149aaec4d5f3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3",
            "size": 58731,
            "upload_time": "2023-09-23T09:55:41",
            "upload_time_iso_8601": "2023-09-23T09:55:41.104161Z",
            "url": "https://files.pythonhosted.org/packages/2c/b0/6c4e91d8b30dce0a186b75bd7bd6f0c3bb1c0f7a0715eb724b60dc00f4fd/MetEvolSim-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-23 09:55:41",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "charlesrocabert",
    "github_project": "MetEvolSim",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "metevolsim"
}
        
Elapsed time: 2.39792s