ModulusVascularFlow


NameModulusVascularFlow JSON
Version 1.0.3 PyPI version JSON
download
home_pageNone
SummaryCodes extention from NVIDIA Modulus.
upload_time2024-04-18 15:15:57
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT License Copyright (c) 2023 W. X. Chan Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
keywords modulus pytorch pinn
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ModulusVascularFlow
Multicase vascular flow PINN based on Nvidia Modulus v20.09 framework

NVIDIA Modulus:https://docs.nvidia.com/deeplearning/modulus/modulus-v2209/index.html#undefined

Codes extention from NVIDIA Modulus can be found in folder ModulusDL

## Examples
#### Multicase PINN for 2D stenosis
stenosis2dsimplemode_plus_0hb.py : plus size Modes Network (codes fully commented)
	
stenosis2dsimplemode_0hb.py : full size Modes Network
	
stenosis2dsimplemode_plus_deqn_0hb.py : plus size Modes Network with added derivatives of governing and boundary equations with respect to case parameter

stenosis2dsimplecase_0hb.py : full size Hypernetwork

stenosis2dsimplecase_low_0hb.py : small size Hypernetwork
	
stenosis2dsimplecase_plus_0hb.py : plus size Hypernetwork
	
stenosis2dsimplecase_plus_deqn_0hb.py : plus size Hypernetwork with added derivatives of governing and boundary equations with respect to case parameter
	
stenosis2dsimplemix_0hb.py : full size Mix Network
	
stenosis2dsimplemix_plus_0hb.py : plus size Mix Network
	
stenosis2dsimplemix_plus_0io_0hb.py : plus size Mix Network without tube-specific coordinates input
	
stenosis2dsimplemix_plus_deqn_0hb.py : full size Mix Network with added derivatives of governing and boundary equations with respect to case parameter
	
stenosis2dsimplesingle256_io.py : single PINN Network with 256 nodes per layer (4 layers)
	
stenosis2dsimplesingle384_0io.py : single PINN Network with 384 nodes per layer (4 layers) without tube-specific coordinates input
	
stenosis2dsimplesingle512_0io.py : single PINN Network with 512 nodes per layer (4 layers) without tube-specific coordinates input
	
stenosis2dsimplesingle1024_0io.py : single PINN Network with 1024 nodes per layer (4 layers) without tube-specific coordinates input

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "ModulusVascularFlow",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "Modulus, pytorch, PINN",
    "author": null,
    "author_email": "Wei Xuan Chan <w.x.chan1986@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/28/74/f1a51f1411a5deff332f978367469ef7882c219e21391a0070e1b4319579/modulusvascularflow-1.0.3.tar.gz",
    "platform": null,
    "description": "# ModulusVascularFlow\r\nMulticase vascular flow PINN based on Nvidia Modulus v20.09 framework\r\n\r\nNVIDIA Modulus:https://docs.nvidia.com/deeplearning/modulus/modulus-v2209/index.html#undefined\r\n\r\nCodes extention from NVIDIA Modulus can be found in folder ModulusDL\r\n\r\n## Examples\r\n#### Multicase PINN for 2D stenosis\r\nstenosis2dsimplemode_plus_0hb.py : plus size Modes Network (codes fully commented)\r\n\t\r\nstenosis2dsimplemode_0hb.py : full size Modes Network\r\n\t\r\nstenosis2dsimplemode_plus_deqn_0hb.py : plus size Modes Network with added derivatives of governing and boundary equations with respect to case parameter\r\n\r\nstenosis2dsimplecase_0hb.py : full size Hypernetwork\r\n\r\nstenosis2dsimplecase_low_0hb.py : small size Hypernetwork\r\n\t\r\nstenosis2dsimplecase_plus_0hb.py : plus size Hypernetwork\r\n\t\r\nstenosis2dsimplecase_plus_deqn_0hb.py : plus size Hypernetwork with added derivatives of governing and boundary equations with respect to case parameter\r\n\t\r\nstenosis2dsimplemix_0hb.py : full size Mix Network\r\n\t\r\nstenosis2dsimplemix_plus_0hb.py : plus size Mix Network\r\n\t\r\nstenosis2dsimplemix_plus_0io_0hb.py : plus size Mix Network without tube-specific coordinates input\r\n\t\r\nstenosis2dsimplemix_plus_deqn_0hb.py : full size Mix Network with added derivatives of governing and boundary equations with respect to case parameter\r\n\t\r\nstenosis2dsimplesingle256_io.py : single PINN Network with 256 nodes per layer (4 layers)\r\n\t\r\nstenosis2dsimplesingle384_0io.py : single PINN Network with 384 nodes per layer (4 layers) without tube-specific coordinates input\r\n\t\r\nstenosis2dsimplesingle512_0io.py : single PINN Network with 512 nodes per layer (4 layers) without tube-specific coordinates input\r\n\t\r\nstenosis2dsimplesingle1024_0io.py : single PINN Network with 1024 nodes per layer (4 layers) without tube-specific coordinates input\r\n",
    "bugtrack_url": null,
    "license": "MIT License  Copyright (c) 2023 W. X. Chan  Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:  The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.  THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ",
    "summary": "Codes extention from NVIDIA Modulus.",
    "version": "1.0.3",
    "project_urls": {
        "Homepage": "https://github.com/WeiXuanChan/ModulusVascularFlow"
    },
    "split_keywords": [
        "modulus",
        " pytorch",
        " pinn"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5f275ddf9743d968306df0353d98a7defb693bd5e08d3b882d73cd9e43c4074c",
                "md5": "4ff84415a47dbf538a9731e57dee0364",
                "sha256": "851beb3a0fa1ccba511127880a51997939f9c1a05475fea1d133617e78351ad9"
            },
            "downloads": -1,
            "filename": "ModulusVascularFlow-1.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4ff84415a47dbf538a9731e57dee0364",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 51687,
            "upload_time": "2024-04-18T15:15:55",
            "upload_time_iso_8601": "2024-04-18T15:15:55.466088Z",
            "url": "https://files.pythonhosted.org/packages/5f/27/5ddf9743d968306df0353d98a7defb693bd5e08d3b882d73cd9e43c4074c/ModulusVascularFlow-1.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2874f1a51f1411a5deff332f978367469ef7882c219e21391a0070e1b4319579",
                "md5": "1534b03df9a007e57b5f5c347fcc32b3",
                "sha256": "c80ab98c0a312fa3ab9771e9015c6beb03adbefab0bfb6ae1ce16bcdfb377588"
            },
            "downloads": -1,
            "filename": "modulusvascularflow-1.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "1534b03df9a007e57b5f5c347fcc32b3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 43714,
            "upload_time": "2024-04-18T15:15:57",
            "upload_time_iso_8601": "2024-04-18T15:15:57.341516Z",
            "url": "https://files.pythonhosted.org/packages/28/74/f1a51f1411a5deff332f978367469ef7882c219e21391a0070e1b4319579/modulusvascularflow-1.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-18 15:15:57",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "WeiXuanChan",
    "github_project": "ModulusVascularFlow",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "modulusvascularflow"
}
        
Elapsed time: 1.27731s