# MonsterLab
by Robert Sharp
## Monster Class
### Optional Inputs
It is recommended to pass all the optional arguments or none of them. For example,
a custom type requires a custom name.
- Name: Compound Gaussian Distribution -> String
- Derived from Type
- Multidimensional distribution of types and subtypes
- Type: Wide Flat Distribution -> String
- Demonic
- Devilkin
- Dragon
- Undead
- Elemental
- Fey
- Undead
- Level: Poisson Distribution -> Integer
- Range: [1..20]
- Most Common: [4..7] ~64%
- Mean: 6.001
- Median: 6
- Rarity: Linear Distribution [Rank 0..Rank 5] -> String
- Rank 0: 30.5% Very Common
- Rank 1: 25.0% Common
- Rank 2: 19.4% Uncommon
- Rank 3: 13.8% Rare
- Rank 4: 8.3% Epic
- Rank 5: 2.7% Legendary
### Derived Fields
- Damage: Compound Geometric Distribution with Linear Noise -> String
- Derived from Level and Rarity
- Health: Geometric Distribution with Gaussian Noise -> Float
- Derived from Level and Rarity
- Energy: Geometric Distribution with Gaussian Noise -> Float
- Derived from Level and Rarity
- Sanity: Geometric Distribution with Gaussian Noise -> Float
- Derived from Level and Rarity
- Time Stamp: The Monster's Birthday -> String
### Example Monster
- Name: Revenant
- Type: Undead
- Level: 3
- Rarity: Rank 0
- Damage: 3d2+1
- Health: 6.35
- Energy: 5.78
- Sanity: 6.0
- Time Stamp: 2021-08-09 14:23:23
### Code Example
```
$ pip install MonsterLab
$ python3
>>> from MonsterLab import Monster
>>> Monster()
Name: Imp
Type: Demonic
Level: 10
Rarity: Rank 0
Damage: 10d2+1
Health: 20.89
Energy: 20.55
Sanity: 20.79
Time Stamp: 2021-08-09 14:23:23
```
Raw data
{
"_id": null,
"home_page": "https://github.com/BrokenShell/MonsterLab",
"name": "MonsterLab",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "MonsterLab",
"author": "Robert Sharp",
"author_email": "webmaster@sharpdesigndigital.com",
"download_url": "https://files.pythonhosted.org/packages/1c/f0/d251b7300022e5fb1941f786d473211bf0c5d8e4758629515fbc7052f89e/MonsterLab-1.2.7.tar.gz",
"platform": "Darwin",
"description": "# MonsterLab\nby Robert Sharp\n\n## Monster Class\n### Optional Inputs\nIt is recommended to pass all the optional arguments or none of them. For example,\na custom type requires a custom name.\n- Name: Compound Gaussian Distribution -> String\n - Derived from Type\n - Multidimensional distribution of types and subtypes\n- Type: Wide Flat Distribution -> String\n - Demonic\n - Devilkin\n - Dragon\n - Undead\n - Elemental\n - Fey\n - Undead\n- Level: Poisson Distribution -> Integer\n - Range: [1..20]\n - Most Common: [4..7] ~64%\n - Mean: 6.001\n - Median: 6\n- Rarity: Linear Distribution [Rank 0..Rank 5] -> String\n - Rank 0: 30.5% Very Common\n - Rank 1: 25.0% Common\n - Rank 2: 19.4% Uncommon\n - Rank 3: 13.8% Rare\n - Rank 4: 8.3% Epic\n - Rank 5: 2.7% Legendary\n\n### Derived Fields\n- Damage: Compound Geometric Distribution with Linear Noise -> String\n - Derived from Level and Rarity\n- Health: Geometric Distribution with Gaussian Noise -> Float\n - Derived from Level and Rarity\n- Energy: Geometric Distribution with Gaussian Noise -> Float\n - Derived from Level and Rarity\n- Sanity: Geometric Distribution with Gaussian Noise -> Float\n - Derived from Level and Rarity\n- Time Stamp: The Monster's Birthday -> String\n\n### Example Monster\n- Name: Revenant\n- Type: Undead\n- Level: 3\n- Rarity: Rank 0\n- Damage: 3d2+1\n- Health: 6.35\n- Energy: 5.78\n- Sanity: 6.0\n- Time Stamp: 2021-08-09 14:23:23\n\n### Code Example\n```\n$ pip install MonsterLab\n$ python3\n>>> from MonsterLab import Monster\n>>> Monster()\nName: Imp\nType: Demonic\nLevel: 10\nRarity: Rank 0\nDamage: 10d2+1\nHealth: 20.89\nEnergy: 20.55\nSanity: 20.79\nTime Stamp: 2021-08-09 14:23:23\n```\n",
"bugtrack_url": null,
"license": "Free for non-commercial use",
"summary": "Monster Generator",
"version": "1.2.7",
"split_keywords": [
"monsterlab"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "8d700010d7310695df11c0e27a5da2c428dad83dc01a14e9f3522cb1286c6cc5",
"md5": "a332084f1cd5c4a916042cd159e789d2",
"sha256": "3925f88d5375a70efcaa7da6937eb541aaf00a9825da5eb3e800710a7139b569"
},
"downloads": -1,
"filename": "MonsterLab-1.2.7-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a332084f1cd5c4a916042cd159e789d2",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 4396,
"upload_time": "2023-01-07T21:40:47",
"upload_time_iso_8601": "2023-01-07T21:40:47.530473Z",
"url": "https://files.pythonhosted.org/packages/8d/70/0010d7310695df11c0e27a5da2c428dad83dc01a14e9f3522cb1286c6cc5/MonsterLab-1.2.7-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1cf0d251b7300022e5fb1941f786d473211bf0c5d8e4758629515fbc7052f89e",
"md5": "854d0622c8fcc35885a5d623667de99d",
"sha256": "edf77fb428a8e3669f5bfee15a972c7d677b7fb56e6c2b94a6a53b151d2da171"
},
"downloads": -1,
"filename": "MonsterLab-1.2.7.tar.gz",
"has_sig": false,
"md5_digest": "854d0622c8fcc35885a5d623667de99d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 4130,
"upload_time": "2023-01-07T21:40:49",
"upload_time_iso_8601": "2023-01-07T21:40:49.023703Z",
"url": "https://files.pythonhosted.org/packages/1c/f0/d251b7300022e5fb1941f786d473211bf0c5d8e4758629515fbc7052f89e/MonsterLab-1.2.7.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-01-07 21:40:49",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "BrokenShell",
"github_project": "MonsterLab",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "monsterlab"
}