MonsterLab


NameMonsterLab JSON
Version 1.2.7 PyPI version JSON
download
home_pagehttps://github.com/BrokenShell/MonsterLab
SummaryMonster Generator
upload_time2023-01-07 21:40:49
maintainer
docs_urlNone
authorRobert Sharp
requires_python>=3.7
licenseFree for non-commercial use
keywords monsterlab
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # MonsterLab
by Robert Sharp

## Monster Class
### Optional Inputs
It is recommended to pass all the optional arguments or none of them. For example,
a custom type requires a custom name.
- Name: Compound Gaussian Distribution -> String
  - Derived from Type
  - Multidimensional distribution of types and subtypes
- Type: Wide Flat Distribution -> String
  - Demonic
  - Devilkin
  - Dragon
  - Undead
  - Elemental
  - Fey
  - Undead
- Level: Poisson Distribution -> Integer
  - Range: [1..20]
  - Most Common: [4..7] ~64%
  - Mean: 6.001
  - Median: 6
- Rarity: Linear Distribution [Rank 0..Rank 5] -> String
  - Rank 0: 30.5% Very Common
  - Rank 1: 25.0% Common
  - Rank 2: 19.4% Uncommon
  - Rank 3: 13.8% Rare
  - Rank 4: 8.3% Epic
  - Rank 5: 2.7% Legendary

### Derived Fields
- Damage: Compound Geometric Distribution with Linear Noise -> String
  - Derived from Level and Rarity
- Health: Geometric Distribution with Gaussian Noise -> Float
  - Derived from Level and Rarity
- Energy: Geometric Distribution with Gaussian Noise -> Float
  - Derived from Level and Rarity
- Sanity: Geometric Distribution with Gaussian Noise -> Float
  - Derived from Level and Rarity
- Time Stamp: The Monster's Birthday -> String

### Example Monster
- Name: Revenant
- Type: Undead
- Level: 3
- Rarity: Rank 0
- Damage: 3d2+1
- Health: 6.35
- Energy: 5.78
- Sanity: 6.0
- Time Stamp: 2021-08-09 14:23:23

### Code Example
```
$ pip install MonsterLab
$ python3
>>> from MonsterLab import Monster
>>> Monster()
Name: Imp
Type: Demonic
Level: 10
Rarity: Rank 0
Damage: 10d2+1
Health: 20.89
Energy: 20.55
Sanity: 20.79
Time Stamp: 2021-08-09 14:23:23
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/BrokenShell/MonsterLab",
    "name": "MonsterLab",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "MonsterLab",
    "author": "Robert Sharp",
    "author_email": "webmaster@sharpdesigndigital.com",
    "download_url": "https://files.pythonhosted.org/packages/1c/f0/d251b7300022e5fb1941f786d473211bf0c5d8e4758629515fbc7052f89e/MonsterLab-1.2.7.tar.gz",
    "platform": "Darwin",
    "description": "# MonsterLab\nby Robert Sharp\n\n## Monster Class\n### Optional Inputs\nIt is recommended to pass all the optional arguments or none of them. For example,\na custom type requires a custom name.\n- Name: Compound Gaussian Distribution -> String\n  - Derived from Type\n  - Multidimensional distribution of types and subtypes\n- Type: Wide Flat Distribution -> String\n  - Demonic\n  - Devilkin\n  - Dragon\n  - Undead\n  - Elemental\n  - Fey\n  - Undead\n- Level: Poisson Distribution -> Integer\n  - Range: [1..20]\n  - Most Common: [4..7] ~64%\n  - Mean: 6.001\n  - Median: 6\n- Rarity: Linear Distribution [Rank 0..Rank 5] -> String\n  - Rank 0: 30.5% Very Common\n  - Rank 1: 25.0% Common\n  - Rank 2: 19.4% Uncommon\n  - Rank 3: 13.8% Rare\n  - Rank 4: 8.3% Epic\n  - Rank 5: 2.7% Legendary\n\n### Derived Fields\n- Damage: Compound Geometric Distribution with Linear Noise -> String\n  - Derived from Level and Rarity\n- Health: Geometric Distribution with Gaussian Noise -> Float\n  - Derived from Level and Rarity\n- Energy: Geometric Distribution with Gaussian Noise -> Float\n  - Derived from Level and Rarity\n- Sanity: Geometric Distribution with Gaussian Noise -> Float\n  - Derived from Level and Rarity\n- Time Stamp: The Monster's Birthday -> String\n\n### Example Monster\n- Name: Revenant\n- Type: Undead\n- Level: 3\n- Rarity: Rank 0\n- Damage: 3d2+1\n- Health: 6.35\n- Energy: 5.78\n- Sanity: 6.0\n- Time Stamp: 2021-08-09 14:23:23\n\n### Code Example\n```\n$ pip install MonsterLab\n$ python3\n>>> from MonsterLab import Monster\n>>> Monster()\nName: Imp\nType: Demonic\nLevel: 10\nRarity: Rank 0\nDamage: 10d2+1\nHealth: 20.89\nEnergy: 20.55\nSanity: 20.79\nTime Stamp: 2021-08-09 14:23:23\n```\n",
    "bugtrack_url": null,
    "license": "Free for non-commercial use",
    "summary": "Monster Generator",
    "version": "1.2.7",
    "split_keywords": [
        "monsterlab"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8d700010d7310695df11c0e27a5da2c428dad83dc01a14e9f3522cb1286c6cc5",
                "md5": "a332084f1cd5c4a916042cd159e789d2",
                "sha256": "3925f88d5375a70efcaa7da6937eb541aaf00a9825da5eb3e800710a7139b569"
            },
            "downloads": -1,
            "filename": "MonsterLab-1.2.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a332084f1cd5c4a916042cd159e789d2",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 4396,
            "upload_time": "2023-01-07T21:40:47",
            "upload_time_iso_8601": "2023-01-07T21:40:47.530473Z",
            "url": "https://files.pythonhosted.org/packages/8d/70/0010d7310695df11c0e27a5da2c428dad83dc01a14e9f3522cb1286c6cc5/MonsterLab-1.2.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1cf0d251b7300022e5fb1941f786d473211bf0c5d8e4758629515fbc7052f89e",
                "md5": "854d0622c8fcc35885a5d623667de99d",
                "sha256": "edf77fb428a8e3669f5bfee15a972c7d677b7fb56e6c2b94a6a53b151d2da171"
            },
            "downloads": -1,
            "filename": "MonsterLab-1.2.7.tar.gz",
            "has_sig": false,
            "md5_digest": "854d0622c8fcc35885a5d623667de99d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 4130,
            "upload_time": "2023-01-07T21:40:49",
            "upload_time_iso_8601": "2023-01-07T21:40:49.023703Z",
            "url": "https://files.pythonhosted.org/packages/1c/f0/d251b7300022e5fb1941f786d473211bf0c5d8e4758629515fbc7052f89e/MonsterLab-1.2.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-07 21:40:49",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "BrokenShell",
    "github_project": "MonsterLab",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "monsterlab"
}
        
Elapsed time: 0.04940s