MorletWaveModal


NameMorletWaveModal JSON
Version 0.6.3 PyPI version JSON
download
home_pagehttps://github.com/ladisk/MorletWaveModal
SummaryMorlet Wave Modal Identification.
upload_time2023-02-10 09:20:45
maintainerIvan Tomac, Janko Slavič
docs_urlNone
authorIvan Tomac, Janko Slavič
requires_python
licenseMIT license
keywords modal parameters morlet-wave identification
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            MWModal - Morlet-Wave Modal Identification 
------------------------------------------
This is the Python implementation of the Morlet-Wave Modal identification method which is based on the [1]_.

This package is created within the MSCA IF project `NOSTRADAMUS`_.


Simple example
---------------
A simple example how to identify modal parameters using Morlet-Wave Modal package:

.. code-block:: python

    import mwmodal as mwm
    import numpy as np

    # set time domain
    fs = 5000 # sampling frequency [Hz]
    T = 2 # signal duration [s]
    time = np.arange(T*fs) / fs # time vector

    # generate a free response of a SDOF damped mechanical system
    w_d = 2*np.pi * 100 # damped natural frequency
    d = 0.01 # damping ratio
    x = 1 # amplitude
    phi = 0.3 # phase
    response = x * np.exp(-d * w_d / np.sqrt(1 - d**2) * time) * np.cos(w_d * time - phi)

    # set MorletWaveModal object identifier
    identifier = mwm.MorletWaveModal(free_response=response, fs=fs)

    #  set initial natural frequency, estimate damping ratio and identify modal parameters
    identifier.identify_modal_parameters(omega_estimated=w_n, damping_estimated=0.005)

References
----------
.. [1] J\. Slavič, M. Boltežar, Damping identification with the Morlet-wave, Mechanical Systems and Signal Processing, 25 (2011) 1632–1645, doi: `10.1016/j.ymssp.2011.01.008`_.


.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.7002905.svg
   :target: https://doi.org/10.5281/zenodo.7002905

.. _NOSTRADAMUS: http://ladisk.si/?what=incfl&flnm=nostradamus.php
.. _10.1016/j.ymssp.2011.01.008: https://doi.org/10.1016/j.ymssp.2011.01.008

.. image:: https://github.com/ladisk/MorletWaveModal/actions/workflows/python-package.yml/badge.svg
    :target: https://github.com/ladisk/MorletWaveModal/actions

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ladisk/MorletWaveModal",
    "name": "MorletWaveModal",
    "maintainer": "Ivan Tomac, Janko Slavi\u010d",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "janko.slavic@fs.uni-lj.si",
    "keywords": "modal parameters, morlet-wave, identification",
    "author": "Ivan Tomac, Janko Slavi\u010d",
    "author_email": "ivan.tomac@fs.uni-lj.si, janko.slavic@fs.uni-lj.si",
    "download_url": "https://files.pythonhosted.org/packages/45/bf/0a458afaf12bc5e40922b0549eb4ba586a7565fb608a8e014fa685883f8d/MorletWaveModal-0.6.3.tar.gz",
    "platform": null,
    "description": "MWModal - Morlet-Wave Modal Identification \n------------------------------------------\nThis is the Python implementation of the Morlet-Wave Modal identification method which is based on the [1]_.\n\nThis package is created within the MSCA IF project `NOSTRADAMUS`_.\n\n\nSimple example\n---------------\nA simple example how to identify modal parameters using Morlet-Wave Modal package:\n\n.. code-block:: python\n\n    import mwmodal as mwm\n    import numpy as np\n\n    # set time domain\n    fs = 5000 # sampling frequency [Hz]\n    T = 2 # signal duration [s]\n    time = np.arange(T*fs) / fs # time vector\n\n    # generate a free response of a SDOF damped mechanical system\n    w_d = 2*np.pi * 100 # damped natural frequency\n    d = 0.01 # damping ratio\n    x = 1 # amplitude\n    phi = 0.3 # phase\n    response = x * np.exp(-d * w_d / np.sqrt(1 - d**2) * time) * np.cos(w_d * time - phi)\n\n    # set MorletWaveModal object identifier\n    identifier = mwm.MorletWaveModal(free_response=response, fs=fs)\n\n    #  set initial natural frequency, estimate damping ratio and identify modal parameters\n    identifier.identify_modal_parameters(omega_estimated=w_n, damping_estimated=0.005)\n\nReferences\n----------\n.. [1] J\\. Slavi\u010d, M. Bolte\u017ear, Damping identification with the Morlet-wave, Mechanical Systems and Signal Processing, 25 (2011) 1632\u20131645, doi: `10.1016/j.ymssp.2011.01.008`_.\n\n\n.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.7002905.svg\n   :target: https://doi.org/10.5281/zenodo.7002905\n\n.. _NOSTRADAMUS: http://ladisk.si/?what=incfl&flnm=nostradamus.php\n.. _10.1016/j.ymssp.2011.01.008: https://doi.org/10.1016/j.ymssp.2011.01.008\n\n.. image:: https://github.com/ladisk/MorletWaveModal/actions/workflows/python-package.yml/badge.svg\n    :target: https://github.com/ladisk/MorletWaveModal/actions\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "Morlet Wave Modal Identification.",
    "version": "0.6.3",
    "split_keywords": [
        "modal parameters",
        " morlet-wave",
        " identification"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a22de92f583e66e02f4c322db20d2757027f1cfdbd453bba313c316a94cfa426",
                "md5": "fedf86cf4c92cd4db23451b9ef1d7bcd",
                "sha256": "03936e4ab70601c7df2a363b9f090f04ecc2d320fb4dd4d4b819b10e57aa23c3"
            },
            "downloads": -1,
            "filename": "MorletWaveModal-0.6.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fedf86cf4c92cd4db23451b9ef1d7bcd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 7627,
            "upload_time": "2023-02-10T09:20:43",
            "upload_time_iso_8601": "2023-02-10T09:20:43.369189Z",
            "url": "https://files.pythonhosted.org/packages/a2/2d/e92f583e66e02f4c322db20d2757027f1cfdbd453bba313c316a94cfa426/MorletWaveModal-0.6.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "45bf0a458afaf12bc5e40922b0549eb4ba586a7565fb608a8e014fa685883f8d",
                "md5": "04dc07017a5db0840bfdbafe66eb3b91",
                "sha256": "7e3d92c657975d94ecb68787a62916eeb07edc132c34b1dc857b6542b5110803"
            },
            "downloads": -1,
            "filename": "MorletWaveModal-0.6.3.tar.gz",
            "has_sig": false,
            "md5_digest": "04dc07017a5db0840bfdbafe66eb3b91",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 7256,
            "upload_time": "2023-02-10T09:20:45",
            "upload_time_iso_8601": "2023-02-10T09:20:45.097274Z",
            "url": "https://files.pythonhosted.org/packages/45/bf/0a458afaf12bc5e40922b0549eb4ba586a7565fb608a8e014fa685883f8d/MorletWaveModal-0.6.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-02-10 09:20:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "ladisk",
    "github_project": "MorletWaveModal",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "morletwavemodal"
}
        
Elapsed time: 0.05471s