NetKet


NameNetKet JSON
Version 3.19.1 PyPI version JSON
download
home_pageNone
SummaryNetket : Machine Learning toolbox for many-body quantum systems.
upload_time2025-09-03 18:25:30
maintainerNone
docs_urlNone
authorGiuseppe Carleo, Filippo Vicentini, The NetKet authors
requires_python>=3.11
licenseApache 2.0
keywords jax machine learning monte carlo neural networks neural quantum states quantum
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
<img src="https://www.netket.org/logo/logo_simple.jpg" alt="logo" width="400"></img>
</div>

# __NetKet__

[![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org)
[![Release](https://img.shields.io/github/release/netket/netket.svg)](https://github.com/netket/netket/releases)
[![Paper (v3)](https://img.shields.io/badge/paper%20%28v3%29-arXiv%3A2112.10526-B31B1B)](https://scipost.org/SciPostPhysCodeb.7/pdf)
[![codecov](https://codecov.io/gh/netket/netket/branch/master/graph/badge.svg?token=gzcOlpO5lB)](https://codecov.io/gh/netket/netket)
[![Slack](https://img.shields.io/badge/slack-chat-green.svg)](https://join.slack.com/t/mlquantum/shared_invite/zt-19wibmfdv-LLRI6i43wrLev6oQX0OfOw)

NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and machine learning techniques.
It is a Python library built on [JAX](https://github.com/google/jax).

NetKet is an affiliated project to [numFOCUS](https://numfocus.org).

- **Homepage:** <https://www.netket.org>
- **Citing:** <https://www.netket.org/cite/>
- **Documentation:** <https://netket.readthedocs.io/en/latest/index.html>
- **Tutorials:** <https://netket.readthedocs.io/en/latest/tutorials/gs-ising.html>
- **Examples:** <https://github.com/netket/netket/tree/master/Examples>
- **Source code:** <https://github.com/netket/netket>

## Installation and Usage

NetKet runs on MacOS and Linux and requires Python 3.11 or later. We recommend installing NetKet using `pip` or `uv`. **Do not use conda** as JAX has known issues when installed through conda.

```sh
pip install --upgrade pip
pip install netket
```

**With GPU support (Linux only):**
```sh
pip install 'netket[cuda]'
```

**Development version:**
```sh
pip install git+https://github.com/netket/netket.git
```

For detailed installation instructions including GPU setup, see our [installation guide](https://netket.readthedocs.io/en/latest/install.html).

## Getting Started

To get started with NetKet, we recommend you give a look at our [tutorials page](https://netket.readthedocs.io/en/latest/tutorials/gs-ising.html), by running them on your computer or on [Google Colaboratory](https://colab.research.google.com).
There are also many example scripts that you can download, run and edit that showcase some use-cases of NetKet, although they are not commented.

If you want to get in touch with us, feel free to open an issue or a discussion here on GitHub, or to join the MLQuantum slack group where several people involved with NetKet hang out. To join the slack channel just accept [this invitation](https://join.slack.com/t/mlquantum/shared_invite/zt-19wibmfdv-LLRI6i43wrLev6oQX0OfOw)

## License

[Apache License 2.0](https://github.com/netket/netket/blob/master/LICENSE)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "NetKet",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": null,
    "keywords": "Jax, Machine Learning, Monte Carlo, Neural Networks, Neural Quantum States, Quantum",
    "author": "Giuseppe Carleo, Filippo Vicentini, The NetKet authors",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/be/f7/9c0ee4fa7b060bd1ccffdaa553f2ff61a58fcd7f6dda932f0f30c89296da/netket-3.19.1.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n<img src=\"https://www.netket.org/logo/logo_simple.jpg\" alt=\"logo\" width=\"400\"></img>\n</div>\n\n# __NetKet__\n\n[![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org)\n[![Release](https://img.shields.io/github/release/netket/netket.svg)](https://github.com/netket/netket/releases)\n[![Paper (v3)](https://img.shields.io/badge/paper%20%28v3%29-arXiv%3A2112.10526-B31B1B)](https://scipost.org/SciPostPhysCodeb.7/pdf)\n[![codecov](https://codecov.io/gh/netket/netket/branch/master/graph/badge.svg?token=gzcOlpO5lB)](https://codecov.io/gh/netket/netket)\n[![Slack](https://img.shields.io/badge/slack-chat-green.svg)](https://join.slack.com/t/mlquantum/shared_invite/zt-19wibmfdv-LLRI6i43wrLev6oQX0OfOw)\n\nNetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and machine learning techniques.\nIt is a Python library built on [JAX](https://github.com/google/jax).\n\nNetKet is an affiliated project to [numFOCUS](https://numfocus.org).\n\n- **Homepage:** <https://www.netket.org>\n- **Citing:** <https://www.netket.org/cite/>\n- **Documentation:** <https://netket.readthedocs.io/en/latest/index.html>\n- **Tutorials:** <https://netket.readthedocs.io/en/latest/tutorials/gs-ising.html>\n- **Examples:** <https://github.com/netket/netket/tree/master/Examples>\n- **Source code:** <https://github.com/netket/netket>\n\n## Installation and Usage\n\nNetKet runs on MacOS and Linux and requires Python 3.11 or later. We recommend installing NetKet using `pip` or `uv`. **Do not use conda** as JAX has known issues when installed through conda.\n\n```sh\npip install --upgrade pip\npip install netket\n```\n\n**With GPU support (Linux only):**\n```sh\npip install 'netket[cuda]'\n```\n\n**Development version:**\n```sh\npip install git+https://github.com/netket/netket.git\n```\n\nFor detailed installation instructions including GPU setup, see our [installation guide](https://netket.readthedocs.io/en/latest/install.html).\n\n## Getting Started\n\nTo get started with NetKet, we recommend you give a look at our [tutorials page](https://netket.readthedocs.io/en/latest/tutorials/gs-ising.html), by running them on your computer or on [Google Colaboratory](https://colab.research.google.com).\nThere are also many example scripts that you can download, run and edit that showcase some use-cases of NetKet, although they are not commented.\n\nIf you want to get in touch with us, feel free to open an issue or a discussion here on GitHub, or to join the MLQuantum slack group where several people involved with NetKet hang out. To join the slack channel just accept [this invitation](https://join.slack.com/t/mlquantum/shared_invite/zt-19wibmfdv-LLRI6i43wrLev6oQX0OfOw)\n\n## License\n\n[Apache License 2.0](https://github.com/netket/netket/blob/master/LICENSE)\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Netket : Machine Learning toolbox for many-body quantum systems.",
    "version": "3.19.1",
    "project_urls": {
        "changelog": "https://netket.readthedocs.io/en/latest/docs/changelog.html",
        "documentation": "https://netket.readthedocs.io/en/latest/#",
        "homepage": "https://www.netket.org",
        "repository": "https://github.com/netket/netket"
    },
    "split_keywords": [
        "jax",
        " machine learning",
        " monte carlo",
        " neural networks",
        " neural quantum states",
        " quantum"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "674fefb69bd08501e2083c3ecc34508f599cc22d2c7888472b0ab9e980a45611",
                "md5": "b1f266604b193567955f30ce45294dce",
                "sha256": "869831df0bfc1c9f3c1bfe52bf75159cfcfae015677acf93b67a3a3aa2a9ffe3"
            },
            "downloads": -1,
            "filename": "netket-3.19.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b1f266604b193567955f30ce45294dce",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 762448,
            "upload_time": "2025-09-03T18:25:28",
            "upload_time_iso_8601": "2025-09-03T18:25:28.870048Z",
            "url": "https://files.pythonhosted.org/packages/67/4f/efb69bd08501e2083c3ecc34508f599cc22d2c7888472b0ab9e980a45611/netket-3.19.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "bef79c0ee4fa7b060bd1ccffdaa553f2ff61a58fcd7f6dda932f0f30c89296da",
                "md5": "35661fa3fee8e594c07edea71e7e5a18",
                "sha256": "e56ba8ce79a845535f4d22e0038b2c037b25384f8822d838a502affb0a5970f6"
            },
            "downloads": -1,
            "filename": "netket-3.19.1.tar.gz",
            "has_sig": false,
            "md5_digest": "35661fa3fee8e594c07edea71e7e5a18",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 479719,
            "upload_time": "2025-09-03T18:25:30",
            "upload_time_iso_8601": "2025-09-03T18:25:30.394583Z",
            "url": "https://files.pythonhosted.org/packages/be/f7/9c0ee4fa7b060bd1ccffdaa553f2ff61a58fcd7f6dda932f0f30c89296da/netket-3.19.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-03 18:25:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "netket",
    "github_project": "netket",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "netket"
}
        
Elapsed time: 1.75247s