# Py-Neuronn
Neuronn is a collection of machine learning models implemented from scratch. This library provides simple and easy-to-use implementations of various machine learning algorithms, including linear regression, multiple regression, logistic regression, k-nearest neighbors (KNN), decision trees,random forests,XGB classifier and SVM.
## Installation
You can install Neuronn using pip:
```bash
pip install Neuronn
```
## Usage
Here an examples of how to use the models provided by Neuron:
### Linear Regression
```python
from Neuronn import LinearRegression
import numpy as np
# Example data
X = np.array([[1], [2], [3], [4]])
y = np.array([2, 4, 6, 8])
# Create and train the model
model = LinearRegression(learning_rate=0.01, epochs=1000)
model.fit(X, y)
# Make predictions
predictions = model.predict(X)
print("Predictions:", predictions)
```
## Contributing
Contributions are welcome! Please open an issue or submit a pull request on GitHub.
## License
This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for more details.
## Contact
For any questions or feedback, please contact [Karthikeyan](mailto:karthikkrishna0907@gmail.com).
Raw data
{
"_id": null,
"home_page": "https://github.com/username/neuron",
"name": "Neuronn",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": null,
"author": "Karthikeyan",
"author_email": "karthikkrishna0907@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/57/ef/fdad34a84dc5e79a43dd9836e68929befbfc540024b6a94ff0f37e281bb2/neuronn-0.1.0.tar.gz",
"platform": null,
"description": "\r\n# Py-Neuronn\r\n\r\nNeuronn is a collection of machine learning models implemented from scratch. This library provides simple and easy-to-use implementations of various machine learning algorithms, including linear regression, multiple regression, logistic regression, k-nearest neighbors (KNN), decision trees,random forests,XGB classifier and SVM.\r\n\r\n## Installation\r\n\r\nYou can install Neuronn using pip:\r\n\r\n```bash\r\npip install Neuronn\r\n```\r\n\r\n## Usage\r\n\r\nHere an examples of how to use the models provided by Neuron:\r\n\r\n### Linear Regression\r\n\r\n```python\r\nfrom Neuronn import LinearRegression\r\nimport numpy as np\r\n\r\n# Example data\r\nX = np.array([[1], [2], [3], [4]])\r\ny = np.array([2, 4, 6, 8])\r\n\r\n# Create and train the model\r\nmodel = LinearRegression(learning_rate=0.01, epochs=1000)\r\nmodel.fit(X, y)\r\n\r\n# Make predictions\r\npredictions = model.predict(X)\r\nprint(\"Predictions:\", predictions)\r\n\r\n```\r\n\r\n\r\n## Contributing\r\n\r\nContributions are welcome! Please open an issue or submit a pull request on GitHub.\r\n\r\n## License\r\n\r\nThis project is licensed under the MIT License. See the [LICENSE](LICENSE) file for more details.\r\n\r\n## Contact\r\n\r\nFor any questions or feedback, please contact [Karthikeyan](mailto:karthikkrishna0907@gmail.com).\r\n",
"bugtrack_url": null,
"license": null,
"summary": "A custum Python ML package",
"version": "0.1.0",
"project_urls": {
"Homepage": "https://github.com/username/neuron"
},
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "dc28fa0ae57c57f860b4f121c23300bd480150d412dbf24cc377841e5ee49bfc",
"md5": "e73b148802f9527885d055160a37ee7a",
"sha256": "5bc865378d1562ca4b7bfffe906e15638d84ccd5411a64f974d9059801c88c68"
},
"downloads": -1,
"filename": "Neuronn-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "e73b148802f9527885d055160a37ee7a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 14638,
"upload_time": "2025-02-01T04:14:09",
"upload_time_iso_8601": "2025-02-01T04:14:09.544267Z",
"url": "https://files.pythonhosted.org/packages/dc/28/fa0ae57c57f860b4f121c23300bd480150d412dbf24cc377841e5ee49bfc/Neuronn-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "57effdad34a84dc5e79a43dd9836e68929befbfc540024b6a94ff0f37e281bb2",
"md5": "1d8bd7f6621538fa633cec6e3f5a8fbf",
"sha256": "2212dabf82937d8cb0cfa0be77b0b3ad02a055a3c1f796a331bd2c03ce6ca18a"
},
"downloads": -1,
"filename": "neuronn-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "1d8bd7f6621538fa633cec6e3f5a8fbf",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 9070,
"upload_time": "2025-02-01T04:14:12",
"upload_time_iso_8601": "2025-02-01T04:14:12.223696Z",
"url": "https://files.pythonhosted.org/packages/57/ef/fdad34a84dc5e79a43dd9836e68929befbfc540024b6a94ff0f37e281bb2/neuronn-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-01 04:14:12",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "username",
"github_project": "neuron",
"github_not_found": true,
"lcname": "neuronn"
}