Neuronn


NameNeuronn JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/username/neuron
SummaryA custum Python ML package
upload_time2025-02-01 04:14:12
maintainerNone
docs_urlNone
authorKarthikeyan
requires_python>=3.6
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Py-Neuronn

Neuronn is a collection of machine learning models implemented from scratch. This library provides simple and easy-to-use implementations of various machine learning algorithms, including linear regression, multiple regression, logistic regression, k-nearest neighbors (KNN), decision trees,random forests,XGB classifier and SVM.

## Installation

You can install Neuronn using pip:

```bash
pip install Neuronn
```

## Usage

Here an examples of how to use the models provided by Neuron:

### Linear Regression

```python
from Neuronn import LinearRegression
import numpy as np

# Example data
X = np.array([[1], [2], [3], [4]])
y = np.array([2, 4, 6, 8])

# Create and train the model
model = LinearRegression(learning_rate=0.01, epochs=1000)
model.fit(X, y)

# Make predictions
predictions = model.predict(X)
print("Predictions:", predictions)

```


## Contributing

Contributions are welcome! Please open an issue or submit a pull request on GitHub.

## License

This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for more details.

## Contact

For any questions or feedback, please contact [Karthikeyan](mailto:karthikkrishna0907@gmail.com).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/username/neuron",
    "name": "Neuronn",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": null,
    "author": "Karthikeyan",
    "author_email": "karthikkrishna0907@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/57/ef/fdad34a84dc5e79a43dd9836e68929befbfc540024b6a94ff0f37e281bb2/neuronn-0.1.0.tar.gz",
    "platform": null,
    "description": "\r\n# Py-Neuronn\r\n\r\nNeuronn is a collection of machine learning models implemented from scratch. This library provides simple and easy-to-use implementations of various machine learning algorithms, including linear regression, multiple regression, logistic regression, k-nearest neighbors (KNN), decision trees,random forests,XGB classifier and SVM.\r\n\r\n## Installation\r\n\r\nYou can install Neuronn using pip:\r\n\r\n```bash\r\npip install Neuronn\r\n```\r\n\r\n## Usage\r\n\r\nHere an examples of how to use the models provided by Neuron:\r\n\r\n### Linear Regression\r\n\r\n```python\r\nfrom Neuronn import LinearRegression\r\nimport numpy as np\r\n\r\n# Example data\r\nX = np.array([[1], [2], [3], [4]])\r\ny = np.array([2, 4, 6, 8])\r\n\r\n# Create and train the model\r\nmodel = LinearRegression(learning_rate=0.01, epochs=1000)\r\nmodel.fit(X, y)\r\n\r\n# Make predictions\r\npredictions = model.predict(X)\r\nprint(\"Predictions:\", predictions)\r\n\r\n```\r\n\r\n\r\n## Contributing\r\n\r\nContributions are welcome! Please open an issue or submit a pull request on GitHub.\r\n\r\n## License\r\n\r\nThis project is licensed under the MIT License. See the [LICENSE](LICENSE) file for more details.\r\n\r\n## Contact\r\n\r\nFor any questions or feedback, please contact [Karthikeyan](mailto:karthikkrishna0907@gmail.com).\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A custum Python ML package",
    "version": "0.1.0",
    "project_urls": {
        "Homepage": "https://github.com/username/neuron"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "dc28fa0ae57c57f860b4f121c23300bd480150d412dbf24cc377841e5ee49bfc",
                "md5": "e73b148802f9527885d055160a37ee7a",
                "sha256": "5bc865378d1562ca4b7bfffe906e15638d84ccd5411a64f974d9059801c88c68"
            },
            "downloads": -1,
            "filename": "Neuronn-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e73b148802f9527885d055160a37ee7a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 14638,
            "upload_time": "2025-02-01T04:14:09",
            "upload_time_iso_8601": "2025-02-01T04:14:09.544267Z",
            "url": "https://files.pythonhosted.org/packages/dc/28/fa0ae57c57f860b4f121c23300bd480150d412dbf24cc377841e5ee49bfc/Neuronn-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "57effdad34a84dc5e79a43dd9836e68929befbfc540024b6a94ff0f37e281bb2",
                "md5": "1d8bd7f6621538fa633cec6e3f5a8fbf",
                "sha256": "2212dabf82937d8cb0cfa0be77b0b3ad02a055a3c1f796a331bd2c03ce6ca18a"
            },
            "downloads": -1,
            "filename": "neuronn-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "1d8bd7f6621538fa633cec6e3f5a8fbf",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 9070,
            "upload_time": "2025-02-01T04:14:12",
            "upload_time_iso_8601": "2025-02-01T04:14:12.223696Z",
            "url": "https://files.pythonhosted.org/packages/57/ef/fdad34a84dc5e79a43dd9836e68929befbfc540024b6a94ff0f37e281bb2/neuronn-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-01 04:14:12",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "username",
    "github_project": "neuron",
    "github_not_found": true,
    "lcname": "neuronn"
}
        
Elapsed time: 1.75348s