NiaAML-GUI


NameNiaAML-GUI JSON
Version 0.3.2 PyPI version JSON
download
home_pagehttps://github.com/firefly-cpp/NiaAML-GUI
SummaryGUI for NiaAML Python package
upload_time2024-08-21 11:09:51
maintainerNone
docs_urlNone
authorLuka Pečnik
requires_python<3.13,>=3.9
licenseMIT
keywords classification niapy niaaml scikit-learn nature-inspired algorithms feature selection preprocessing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <h1 align="center">
    NiaAML-GUI
</h1>

<p align="center">
    <a href="https://pypi.python.org/pypi/niaaml-gui">
        <img alt="PyPI Version" src="https://img.shields.io/pypi/v/niaaml-gui.svg">
    </a>
    <img alt="PyPI - Python Version" src="https://img.shields.io/pypi/pyversions/niaaml-gui.svg">
    <img alt="PyPI - Downloads" src="https://img.shields.io/pypi/dm/niaaml-gui.svg">
        <a href="https://repology.org/project/niaaml-gui/versions">
        <img alt="Packaging status" src="https://repology.org/badge/tiny-repos/niaaml-gui.svg">
    </a>
    <a href="https://src.fedoraproject.org/rpms/NiaAML-GUI">
        <img alt="Fedora package" src="https://img.shields.io/fedora/v/NiaAML-GUI?color=blue&label=Fedora%20Linux&logo=fedora">
    </a>
    <a href="https://github.com/flukapecnik/NiaAML-GUI/blob/master/LICENSE">
        <img alt="GitHub license" src="https://img.shields.io/github/license/lukapecnik/NiaAML-GUI.svg">
    </a>
    <a href="https://github.com/firefly-cpp/NiaAML-GUI/actions/workflows/test.yml">
        <img alt="GitHub Actions" src="https://github.com/firefly-cpp/NiaAML-GUI/actions/workflows/test.yml/badge.svg">
    </a>
</p>

<p align="center">
    <img alt="GitHub commit activity" src="https://img.shields.io/github/commit-activity/w/lukapecnik/NiaAML-GUI.svg">
    <a href='http://isitmaintained.com/project/lukapecnik/NiaAML-GUI "Average time to resolve an issue"'>
        <img alt="Average time to resolve an issue" src="http://isitmaintained.com/badge/resolution/lukapecnik/NiaAML-GUI.svg">
    </a>
    <a href='http://isitmaintained.com/project/lukapecnik/NiaAML-GUI "Percentage of issues still open"'>
        <img alt="Percentage of issues still open" src="http://isitmaintained.com/badge/open/lukapecnik/NiaAML-GUI.svg">
    </a>
    <img alt="GitHub contributors" src="https://img.shields.io/github/contributors/lukapecnik/NiaAML-GUI.svg">
</p>

<p align="center">
    <a href="#-installation">📦 Installation</a> •
    <a href="#-usage">🚀 Usage</a> •
    <a href="#-example">📓 Example</a> •
    <a href="#-references">📝 References</a> •
    <a href="#-cite-us">📄 Cite us</a>
</p>

This is a basic graphical user interface intended for users of the [NiaAML](https://github.com/firefly-cpp/NiaAML) Python package.

* **Free software:** MIT license
* **Python versions:** 3.9.x, 3.10.x, 3.11.x, 3.12.x

## 📦 Installation

To install `NiaAML-GUI` with pip, use:

```sh
pip install niaaml_gui
```

After successful installation, run [main.py](niaaml_gui/main.py):

```sh
python main.py
```

### Fedora Linux

To install `NiaAML-GUI` on Fedora, use:

```sh
$ dnf install NiaAML-GUI
```

### Alpine Linux

To install `NiaAML-GUI` on Alpine Linux, enable Community repository and use:

```sh
$ apk add niaaml-gui
```

## 🚀 Usage

NiaAML GUI application allows you to use the main features of the [NiaAML](https://github.com/firefly-cpp/NiaAML) framework. There are two views in the application. In the first one, you can prepare an environment for a pipeline optimization process. The purpose of the second one is to allow you to use an existing pipeline from a file. **The application currently supports data input in the form of CSV files.**

### Optimization View

Below is a screenshot of the first view with labeled components and you can find a description for each component under the screenshot.

<p align="center"><img src=".github/gui1.png" alt="NiaAML GUI First View" title="NiaAML GUI First View"/></p>

| Component | Description |
|:----------|:------------|
| 1         | Tabbed view for choosing components for the optimization. Clicked components get transferred to their corresponding brackets (labels **5**, **6** and **7**). |
| 2         | Input CSV dataset's file selection widget. After the dataset has been selected, you can also view and edit it using the edit button next to the `Select file` button. **Also make sure you check the `CSV has header` checkbox in case the selected CSV file has a header row.** Below you can see a screenshot of the CSV file's editing window. <p align="center"><img src=".github/gui3.png" alt="NiaAML GUI Edit Dataset View" title="NiaAML GUI Edit Dataset View"/></p> |
| 3         | Dropdown widget for categorical features' encoder selection. It will be ignored if the dataset contains no categorical features. |
| 4         | Dropdown widget for missing data imputer selection. It will be ignored if the dataset contains no missing values. |
| 5         | List of selected feature selection algorithms (optional). |
| 6         | List of selected feature transform algorithms (optional). |
| 7         | List of selected classifiers. |
| 8         | Dropdown widget for the selection of components' selection optimization algorithm. |
| 9         | Dropdown widget for the selection of hyperparameters' tuning optimization algorithm. Defaults to **8** if none is selected. |
| 10        | Population size for the components' selection process. |
| 11        | Population size for the hyperparameters' tuning process. |
| 12        | Number of evaluations during the components' selection process. |
| 13        | Number of evaluations during the hyperparameters' tuning process. |
| 14        | Dropdown widget for the selection of a fitness function to use during the pipeline evaluation step. |
| 15        | Destination of the optimization's result (pipeline and text file). |

#### Optimization

Below you can see screenshots of views during and after the optimization has finished.

<p align="center"><img src=".github/gui2.png" alt="NiaAML GUI Optimization Running" title="NiaAML GUI Optimization Running"/></p>
<p align="center"><img src=".github/gui4.png" alt="NiaAML GUI Optimization Finished" title="NiaAML GUI Optimization Finished"/></p>

### Usage View

Below is a screenshot of the second view with labeled components and you can find a description for each component under the screenshot.

<p align="center"><img src=".github/gui5.png" alt="NiaAML GUI Second View" title="NiaAML GUI Second View"/></p>

| Component | Description |
|:----------|:------------|
| 1         | Pipeline file selection widget. |
| 2         | Input CSV file selection widget. The file should contain the same headers (if any) as the dataset in the optimization process and there should be no classes (expected results) present. After the dataset has been selected, you can also view and edit it using the edit button next to the `Select file` button. **Also make sure you check the** `CSV has header` **checkbox in case the selected CSV file has a header row.** |

#### Run

You get a similar output than in the optimization process, but this time there is an array of predicted values present.

## 📓 Example

Let's say we want to find an optimal classification pipeline for the [Ecoli dataset](https://archive.ics.uci.edu/ml/datasets/ecoli) [[1]](#1). You can see the optimization setup in the screenshot below.

<p align="center"><img src=".github/gui6.png" alt="NiaAML GUI Optimization Setup" title="NiaAML GUI Optimization Setup"/></p>

We hit the `Start optimization` button and wait... You can see the output in the screenshot below.

<p align="center"><img src=".github/gui7.png" alt="NiaAML GUI Optimization Output" title="NiaAML GUI Optimization Output"/></p>

There are also 2 new files in the selected destination directory.

<p align="center"><img src=".github/gui8.png" alt="NiaAML GUI Output Files" title="NiaAML GUI Output Files"/></p>

Now we can use the exported pipeline file for further classification on the unseen data.

<p align="center"><img src=".github/gui9.png" alt="NiaAML GUI Run Pipeline" title="NiaAML GUI Run Pipeline"/></p>

The result for 5 individuals is shown on the screenshot below.

<p align="center"><img src=".github/gui10.png" alt="NiaAML GUI Run Pipeline Result" title="NiaAML GUI Run Pipeline Result"/></p>

## 📝 References

<a id="1">[1]</a> Dua, D. and Graff, C. (2019). [UCI Machine Learning Repository](http://archive.ics.uci.edu/ml). Irvine, CA: University of California, School of Information and Computer Science.

## 📄 Cite us

L. Pečnik, I. Fister Jr. "[NiaAML: AutoML framework based on stochastic population-based nature-inspired algorithms](https://joss.theoj.org/papers/10.21105/joss.02949)." Journal of Open Source Software 6.61 (2021): 2949.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/firefly-cpp/NiaAML-GUI",
    "name": "NiaAML-GUI",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.13,>=3.9",
    "maintainer_email": null,
    "keywords": "classification, NiaPy, NiaAML, scikit-learn, nature-inspired algorithms, feature selection, preprocessing",
    "author": "Luka Pe\u010dnik",
    "author_email": "lukapecnik96@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/7f/f2/418ed9affab53a46ab179e543a9c082218e39e84f6fd3f7415e7b12e6ee2/niaaml_gui-0.3.2.tar.gz",
    "platform": null,
    "description": "<h1 align=\"center\">\n    NiaAML-GUI\n</h1>\n\n<p align=\"center\">\n    <a href=\"https://pypi.python.org/pypi/niaaml-gui\">\n        <img alt=\"PyPI Version\" src=\"https://img.shields.io/pypi/v/niaaml-gui.svg\">\n    </a>\n    <img alt=\"PyPI - Python Version\" src=\"https://img.shields.io/pypi/pyversions/niaaml-gui.svg\">\n    <img alt=\"PyPI - Downloads\" src=\"https://img.shields.io/pypi/dm/niaaml-gui.svg\">\n        <a href=\"https://repology.org/project/niaaml-gui/versions\">\n        <img alt=\"Packaging status\" src=\"https://repology.org/badge/tiny-repos/niaaml-gui.svg\">\n    </a>\n    <a href=\"https://src.fedoraproject.org/rpms/NiaAML-GUI\">\n        <img alt=\"Fedora package\" src=\"https://img.shields.io/fedora/v/NiaAML-GUI?color=blue&label=Fedora%20Linux&logo=fedora\">\n    </a>\n    <a href=\"https://github.com/flukapecnik/NiaAML-GUI/blob/master/LICENSE\">\n        <img alt=\"GitHub license\" src=\"https://img.shields.io/github/license/lukapecnik/NiaAML-GUI.svg\">\n    </a>\n    <a href=\"https://github.com/firefly-cpp/NiaAML-GUI/actions/workflows/test.yml\">\n        <img alt=\"GitHub Actions\" src=\"https://github.com/firefly-cpp/NiaAML-GUI/actions/workflows/test.yml/badge.svg\">\n    </a>\n</p>\n\n<p align=\"center\">\n    <img alt=\"GitHub commit activity\" src=\"https://img.shields.io/github/commit-activity/w/lukapecnik/NiaAML-GUI.svg\">\n    <a href='http://isitmaintained.com/project/lukapecnik/NiaAML-GUI \"Average time to resolve an issue\"'>\n        <img alt=\"Average time to resolve an issue\" src=\"http://isitmaintained.com/badge/resolution/lukapecnik/NiaAML-GUI.svg\">\n    </a>\n    <a href='http://isitmaintained.com/project/lukapecnik/NiaAML-GUI \"Percentage of issues still open\"'>\n        <img alt=\"Percentage of issues still open\" src=\"http://isitmaintained.com/badge/open/lukapecnik/NiaAML-GUI.svg\">\n    </a>\n    <img alt=\"GitHub contributors\" src=\"https://img.shields.io/github/contributors/lukapecnik/NiaAML-GUI.svg\">\n</p>\n\n<p align=\"center\">\n    <a href=\"#-installation\">\ud83d\udce6 Installation</a> \u2022\n    <a href=\"#-usage\">\ud83d\ude80 Usage</a> \u2022\n    <a href=\"#-example\">\ud83d\udcd3 Example</a> \u2022\n    <a href=\"#-references\">\ud83d\udcdd References</a> \u2022\n    <a href=\"#-cite-us\">\ud83d\udcc4 Cite us</a>\n</p>\n\nThis is a basic graphical user interface intended for users of the [NiaAML](https://github.com/firefly-cpp/NiaAML) Python package.\n\n* **Free software:** MIT license\n* **Python versions:** 3.9.x, 3.10.x, 3.11.x, 3.12.x\n\n## \ud83d\udce6 Installation\n\nTo install `NiaAML-GUI` with pip, use:\n\n```sh\npip install niaaml_gui\n```\n\nAfter successful installation, run [main.py](niaaml_gui/main.py):\n\n```sh\npython main.py\n```\n\n### Fedora Linux\n\nTo install `NiaAML-GUI` on Fedora, use:\n\n```sh\n$ dnf install NiaAML-GUI\n```\n\n### Alpine Linux\n\nTo install `NiaAML-GUI` on Alpine Linux, enable Community repository and use:\n\n```sh\n$ apk add niaaml-gui\n```\n\n## \ud83d\ude80 Usage\n\nNiaAML GUI application allows you to use the main features of the [NiaAML](https://github.com/firefly-cpp/NiaAML) framework. There are two views in the application. In the first one, you can prepare an environment for a pipeline optimization process. The purpose of the second one is to allow you to use an existing pipeline from a file. **The application currently supports data input in the form of CSV files.**\n\n### Optimization View\n\nBelow is a screenshot of the first view with labeled components and you can find a description for each component under the screenshot.\n\n<p align=\"center\"><img src=\".github/gui1.png\" alt=\"NiaAML GUI First View\" title=\"NiaAML GUI First View\"/></p>\n\n| Component | Description |\n|:----------|:------------|\n| 1         | Tabbed view for choosing components for the optimization. Clicked components get transferred to their corresponding brackets (labels **5**, **6** and **7**). |\n| 2         | Input CSV dataset's file selection widget. After the dataset has been selected, you can also view and edit it using the edit button next to the `Select file` button. **Also make sure you check the `CSV has header` checkbox in case the selected CSV file has a header row.** Below you can see a screenshot of the CSV file's editing window. <p align=\"center\"><img src=\".github/gui3.png\" alt=\"NiaAML GUI Edit Dataset View\" title=\"NiaAML GUI Edit Dataset View\"/></p> |\n| 3         | Dropdown widget for categorical features' encoder selection. It will be ignored if the dataset contains no categorical features. |\n| 4         | Dropdown widget for missing data imputer selection. It will be ignored if the dataset contains no missing values. |\n| 5         | List of selected feature selection algorithms (optional). |\n| 6         | List of selected feature transform algorithms (optional). |\n| 7         | List of selected classifiers. |\n| 8         | Dropdown widget for the selection of components' selection optimization algorithm. |\n| 9         | Dropdown widget for the selection of hyperparameters' tuning optimization algorithm. Defaults to **8** if none is selected. |\n| 10        | Population size for the components' selection process. |\n| 11        | Population size for the hyperparameters' tuning process. |\n| 12        | Number of evaluations during the components' selection process. |\n| 13        | Number of evaluations during the hyperparameters' tuning process. |\n| 14        | Dropdown widget for the selection of a fitness function to use during the pipeline evaluation step. |\n| 15        | Destination of the optimization's result (pipeline and text file). |\n\n#### Optimization\n\nBelow you can see screenshots of views during and after the optimization has finished.\n\n<p align=\"center\"><img src=\".github/gui2.png\" alt=\"NiaAML GUI Optimization Running\" title=\"NiaAML GUI Optimization Running\"/></p>\n<p align=\"center\"><img src=\".github/gui4.png\" alt=\"NiaAML GUI Optimization Finished\" title=\"NiaAML GUI Optimization Finished\"/></p>\n\n### Usage View\n\nBelow is a screenshot of the second view with labeled components and you can find a description for each component under the screenshot.\n\n<p align=\"center\"><img src=\".github/gui5.png\" alt=\"NiaAML GUI Second View\" title=\"NiaAML GUI Second View\"/></p>\n\n| Component | Description |\n|:----------|:------------|\n| 1         | Pipeline file selection widget. |\n| 2         | Input CSV file selection widget. The file should contain the same headers (if any) as the dataset in the optimization process and there should be no classes (expected results) present. After the dataset has been selected, you can also view and edit it using the edit button next to the `Select file` button. **Also make sure you check the** `CSV has header` **checkbox in case the selected CSV file has a header row.** |\n\n#### Run\n\nYou get a similar output than in the optimization process, but this time there is an array of predicted values present.\n\n## \ud83d\udcd3 Example\n\nLet's say we want to find an optimal classification pipeline for the [Ecoli dataset](https://archive.ics.uci.edu/ml/datasets/ecoli) [[1]](#1). You can see the optimization setup in the screenshot below.\n\n<p align=\"center\"><img src=\".github/gui6.png\" alt=\"NiaAML GUI Optimization Setup\" title=\"NiaAML GUI Optimization Setup\"/></p>\n\nWe hit the `Start optimization` button and wait... You can see the output in the screenshot below.\n\n<p align=\"center\"><img src=\".github/gui7.png\" alt=\"NiaAML GUI Optimization Output\" title=\"NiaAML GUI Optimization Output\"/></p>\n\nThere are also 2 new files in the selected destination directory.\n\n<p align=\"center\"><img src=\".github/gui8.png\" alt=\"NiaAML GUI Output Files\" title=\"NiaAML GUI Output Files\"/></p>\n\nNow we can use the exported pipeline file for further classification on the unseen data.\n\n<p align=\"center\"><img src=\".github/gui9.png\" alt=\"NiaAML GUI Run Pipeline\" title=\"NiaAML GUI Run Pipeline\"/></p>\n\nThe result for 5 individuals is shown on the screenshot below.\n\n<p align=\"center\"><img src=\".github/gui10.png\" alt=\"NiaAML GUI Run Pipeline Result\" title=\"NiaAML GUI Run Pipeline Result\"/></p>\n\n## \ud83d\udcdd References\n\n<a id=\"1\">[1]</a> Dua, D. and Graff, C. (2019). [UCI Machine Learning Repository](http://archive.ics.uci.edu/ml). Irvine, CA: University of California, School of Information and Computer Science.\n\n## \ud83d\udcc4 Cite us\n\nL. Pe\u010dnik, I. Fister Jr. \"[NiaAML: AutoML framework based on stochastic population-based nature-inspired algorithms](https://joss.theoj.org/papers/10.21105/joss.02949).\" Journal of Open Source Software 6.61 (2021): 2949.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "GUI for NiaAML Python package",
    "version": "0.3.2",
    "project_urls": {
        "Homepage": "https://github.com/firefly-cpp/NiaAML-GUI",
        "Repository": "https://github.com/firefly-cpp/NiaAML-GUI"
    },
    "split_keywords": [
        "classification",
        " niapy",
        " niaaml",
        " scikit-learn",
        " nature-inspired algorithms",
        " feature selection",
        " preprocessing"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ad770a876d723e7f131d87e847920ea3af7c24a18b7bb7cec197073d60c438f6",
                "md5": "06a683f096dcee691606b2fe40e77c0f",
                "sha256": "72428677ec53c672b1b07b89c28182dbb5b7ed68747ae594eb20899067fe383e"
            },
            "downloads": -1,
            "filename": "niaaml_gui-0.3.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "06a683f096dcee691606b2fe40e77c0f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.13,>=3.9",
            "size": 20204,
            "upload_time": "2024-08-21T11:09:50",
            "upload_time_iso_8601": "2024-08-21T11:09:50.305546Z",
            "url": "https://files.pythonhosted.org/packages/ad/77/0a876d723e7f131d87e847920ea3af7c24a18b7bb7cec197073d60c438f6/niaaml_gui-0.3.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7ff2418ed9affab53a46ab179e543a9c082218e39e84f6fd3f7415e7b12e6ee2",
                "md5": "a3ac73989aee3ddb63f0cd9eb485e25a",
                "sha256": "a2729afc206c4c5e72fd4c97a546a0a4072dbea1cd97b17a010bff30963b373c"
            },
            "downloads": -1,
            "filename": "niaaml_gui-0.3.2.tar.gz",
            "has_sig": false,
            "md5_digest": "a3ac73989aee3ddb63f0cd9eb485e25a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.13,>=3.9",
            "size": 15724,
            "upload_time": "2024-08-21T11:09:51",
            "upload_time_iso_8601": "2024-08-21T11:09:51.896852Z",
            "url": "https://files.pythonhosted.org/packages/7f/f2/418ed9affab53a46ab179e543a9c082218e39e84f6fd3f7415e7b12e6ee2/niaaml_gui-0.3.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-21 11:09:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "firefly-cpp",
    "github_project": "NiaAML-GUI",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "niaaml-gui"
}
        
Elapsed time: 0.44508s