<p align="center">
<img alt="logo" width="500" src=".github/images/NiaAutoARM.png">
</p>
<h1 align="center">
NiaAutoARM
</h1>
<p align="center">
<img alt="PyPI version" src="https://img.shields.io/pypi/v/niaautoarm.svg" />
<img alt="PyPI - Python Version" src="https://img.shields.io/pypi/pyversions/niaautoarm.svg">
<a href="https://pepy.tech/project/niaautoarm">
<img alt="PyPI - Downloads" src="https://img.shields.io/pypi/dm/niaautoarm.svg">
</a>
<img alt="Downloads" src="https://static.pepy.tech/badge/niaautoarm">
<img alt="NiaAutoARM" src="https://github.com/firefly-cpp/niaautoarm/actions/workflows/test.yml/badge.svg" />
</p>
<p align="center">
<img alt="Repository size" src="https://img.shields.io/github/repo-size/firefly-cpp/NiaAutoARM" />
<img alt="License" src="https://img.shields.io/github/license/firefly-cpp/NiaAutoARM.svg" />
<img alt="GitHub commit activity" src="https://img.shields.io/github/commit-activity/w/firefly-cpp/NiaAutoARM.svg">
<a href="http://isitmaintained.com/project/firefly-cpp/NiaAutoARM">
<img alt="Percentage of issues still open" src="http://isitmaintained.com/badge/open/firefly-cpp/NiaAutoARM.svg">
</a>
<a href="http://isitmaintained.com/project/firefly-cpp/NiaAutoARM">
<img alt="Average time to resolve an issue" src="http://isitmaintained.com/badge/resolution/firefly-cpp/NiaAutoARM.svg">
</a>
<img alt="GitHub contributors" src="https://img.shields.io/github/contributors/firefly-cpp/NiaAutoARM.svg"/>
</p>
<p align="center">
<a href="#-about">🔍 About</a> •
<a href="#-how-it-works">💡 How it works?</a> •
<a href="#-installation">📦 Installation</a> •
<a href="#-usage">🚀 Usage</a> •
<a href="#-further-read">📖 Further read</a> •
<a href="#-references">📝 References</a> •
<a href="#-license">🔑 License</a>
</p>
A novel AutoML method for automatically constructing the full association rule mining pipelines based on stochastic population-based metaheuristics.
* **Free software:** MIT license
* **Python**: 3.9, 3.10, 3.11, 3.12
## 🔍 About
The numerical association rule mining paradigm that includes concurrent dealing with numerical and categorical attributes is beneficial for discovering associations from datasets that consist of both features. The process is not considered as easy since it incorporates several components that form an entire pipeline, i.e., preprocessing, algorithm selection, hyperparameter optimization, and the definition of metrics that evaluate the quality of the association rule. NiaAutoARM software aims to automatize this process and reduce the need for the user's effort to discover association rules.
## 💡 How it works?
See the following [preprint](https://arxiv.org/pdf/2501.00138) for more information.
## 📦 Installation
### pip
To install `NiaAutoARM` with pip, use:
```sh
pip install niaautoarm
```
## 🚀 Usage
Explore the examples [directory](./examples) for more information on how to use the `NiaAutoARM` package.
## 📖 Further read
[1] [NiaARM.jl: Numerical Association Rule Mining in Julia](https://github.com/firefly-cpp/NiaARM.jl)
[2] [arm-preprocessing: Implementation of several preprocessing techniques for Association Rule Mining (ARM)](https://github.com/firefly-cpp/arm-preprocessing)
## 📄 Cite us
Mlakar, U.; Fister, I., Jr.; Fister, I. [NiaAutoARM: Automated Framework for Constructing and Evaluating Association Rule Mining Pipelines](https://doi.org/10.3390/math13121957). Mathematics 2025, 13, 1957. [https://doi.org/10.3390/math13121957](https://doi.org/10.3390/math13121957)
## 📝 References
[1] Ž. Stupan, Fister Jr., I. (2022). [NiaARM: A minimalistic framework for Numerical Association Rule Mining](https://www.theoj.org/joss-papers/joss.04448/10.21105.joss.04448.pdf). Journal of Open Source Software, 7(77), 4448.
[2] L. Pečnik, Fister, I., Fister, I. Jr. [NiaAML2: An Improved AutoML Using Nature-Inspired Algorithms](https://doi.org/10.1007/978-3-030-78811-7_23). In International Conference on Swarm Intelligence (pp. 243-252). Springer, Cham, 2021.
## 🔑 License
This package is distributed under the MIT License. This license can be found online at <http://www.opensource.org/licenses/MIT>.
## Disclaimer
This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!
Raw data
{
"_id": null,
"home_page": "https://github.com/firefly-cpp/NiaAutoARM",
"name": "NiaAutoARM",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": "association rule mining, computational intelligence, data mining, datasets, optimization",
"author": "Uro\u0161 Mlakar",
"author_email": "uros.mlakar@um.si",
"download_url": "https://files.pythonhosted.org/packages/b2/21/f4534b95e380fd2012fb2a3ca2bc5aacf84a858574461fc437ab52856b6f/niaautoarm-0.1.2.tar.gz",
"platform": null,
"description": "<p align=\"center\">\n <img alt=\"logo\" width=\"500\" src=\".github/images/NiaAutoARM.png\">\n</p>\n\n<h1 align=\"center\">\n NiaAutoARM\n</h1>\n\n<p align=\"center\">\n <img alt=\"PyPI version\" src=\"https://img.shields.io/pypi/v/niaautoarm.svg\" />\n <img alt=\"PyPI - Python Version\" src=\"https://img.shields.io/pypi/pyversions/niaautoarm.svg\">\n <a href=\"https://pepy.tech/project/niaautoarm\">\n <img alt=\"PyPI - Downloads\" src=\"https://img.shields.io/pypi/dm/niaautoarm.svg\">\n </a>\n <img alt=\"Downloads\" src=\"https://static.pepy.tech/badge/niaautoarm\">\n <img alt=\"NiaAutoARM\" src=\"https://github.com/firefly-cpp/niaautoarm/actions/workflows/test.yml/badge.svg\" />\n</p>\n\n<p align=\"center\">\n <img alt=\"Repository size\" src=\"https://img.shields.io/github/repo-size/firefly-cpp/NiaAutoARM\" />\n <img alt=\"License\" src=\"https://img.shields.io/github/license/firefly-cpp/NiaAutoARM.svg\" />\n <img alt=\"GitHub commit activity\" src=\"https://img.shields.io/github/commit-activity/w/firefly-cpp/NiaAutoARM.svg\">\n <a href=\"http://isitmaintained.com/project/firefly-cpp/NiaAutoARM\">\n <img alt=\"Percentage of issues still open\" src=\"http://isitmaintained.com/badge/open/firefly-cpp/NiaAutoARM.svg\">\n </a>\n <a href=\"http://isitmaintained.com/project/firefly-cpp/NiaAutoARM\">\n <img alt=\"Average time to resolve an issue\" src=\"http://isitmaintained.com/badge/resolution/firefly-cpp/NiaAutoARM.svg\">\n </a>\n <img alt=\"GitHub contributors\" src=\"https://img.shields.io/github/contributors/firefly-cpp/NiaAutoARM.svg\"/>\n</p>\n\n<p align=\"center\">\n <a href=\"#-about\">\ud83d\udd0d About</a> \u2022\n <a href=\"#-how-it-works\">\ud83d\udca1 How it works?</a> \u2022\n <a href=\"#-installation\">\ud83d\udce6 Installation</a> \u2022\n <a href=\"#-usage\">\ud83d\ude80 Usage</a> \u2022\n <a href=\"#-further-read\">\ud83d\udcd6 Further read</a> \u2022\n <a href=\"#-references\">\ud83d\udcdd References</a> \u2022\n <a href=\"#-license\">\ud83d\udd11 License</a>\n</p>\n\nA novel AutoML method for automatically constructing the full association rule mining pipelines based on stochastic population-based metaheuristics.\n\n* **Free software:** MIT license\n* **Python**: 3.9, 3.10, 3.11, 3.12\n\n## \ud83d\udd0d About\n\nThe numerical association rule mining paradigm that includes concurrent dealing with numerical and categorical attributes is beneficial for discovering associations from datasets that consist of both features. The process is not considered as easy since it incorporates several components that form an entire pipeline, i.e., preprocessing, algorithm selection, hyperparameter optimization, and the definition of metrics that evaluate the quality of the association rule. NiaAutoARM software aims to automatize this process and reduce the need for the user's effort to discover association rules.\n\n## \ud83d\udca1 How it works?\n\nSee the following [preprint](https://arxiv.org/pdf/2501.00138) for more information.\n\n## \ud83d\udce6 Installation\n### pip\n\nTo install `NiaAutoARM` with pip, use:\n\n```sh\npip install niaautoarm\n```\n\n## \ud83d\ude80 Usage\nExplore the examples [directory](./examples) for more information on how to use the `NiaAutoARM` package.\n\n\n## \ud83d\udcd6 Further read\n\n[1] [NiaARM.jl: Numerical Association Rule Mining in Julia](https://github.com/firefly-cpp/NiaARM.jl)\n\n[2] [arm-preprocessing: Implementation of several preprocessing techniques for Association Rule Mining (ARM)](https://github.com/firefly-cpp/arm-preprocessing)\n\n## \ud83d\udcc4 Cite us\n\nMlakar, U.; Fister, I., Jr.; Fister, I. [NiaAutoARM: Automated Framework for Constructing and Evaluating Association Rule Mining Pipelines](https://doi.org/10.3390/math13121957). Mathematics 2025, 13, 1957. [https://doi.org/10.3390/math13121957](https://doi.org/10.3390/math13121957) \n\n## \ud83d\udcdd References\n[1] \u017d. Stupan, Fister Jr., I. (2022). [NiaARM: A minimalistic framework for Numerical Association Rule Mining](https://www.theoj.org/joss-papers/joss.04448/10.21105.joss.04448.pdf). Journal of Open Source Software, 7(77), 4448.\n\n[2] L. Pe\u010dnik, Fister, I., Fister, I. Jr. [NiaAML2: An Improved AutoML Using Nature-Inspired Algorithms](https://doi.org/10.1007/978-3-030-78811-7_23). In International Conference on Swarm Intelligence (pp. 243-252). Springer, Cham, 2021.\n\n## \ud83d\udd11 License\nThis package is distributed under the MIT License. This license can be found online at <http://www.opensource.org/licenses/MIT>.\n\n## Disclaimer\nThis framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!\n",
"bugtrack_url": null,
"license": null,
"summary": "Automated generation and evaluation of Association Rule Mining pipelines",
"version": "0.1.2",
"project_urls": {
"Homepage": "https://github.com/firefly-cpp/NiaAutoARM",
"Repository": "https://github.com/firefly-cpp/NiaAutoARM"
},
"split_keywords": [
"association rule mining",
" computational intelligence",
" data mining",
" datasets",
" optimization"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d523f91d4e07cdfadb7faeff7f0560e2ffd850cf5c3aa584b21d160d6a1b1d44",
"md5": "a8517169a6b0d35759240a8a37933796",
"sha256": "a0d03cc3693add453d10885083ac8d3adfe23be1fad68f6f1dd4157dd287833d"
},
"downloads": -1,
"filename": "niaautoarm-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a8517169a6b0d35759240a8a37933796",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 12176,
"upload_time": "2025-07-21T10:16:26",
"upload_time_iso_8601": "2025-07-21T10:16:26.924731Z",
"url": "https://files.pythonhosted.org/packages/d5/23/f91d4e07cdfadb7faeff7f0560e2ffd850cf5c3aa584b21d160d6a1b1d44/niaautoarm-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b221f4534b95e380fd2012fb2a3ca2bc5aacf84a858574461fc437ab52856b6f",
"md5": "09ec7ef3c84c72402ebcc0c258f11647",
"sha256": "a9d64a4061ebd3aeb08d2fcc63291e918cbb6746d7dbeabf8a94337f9f36a431"
},
"downloads": -1,
"filename": "niaautoarm-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "09ec7ef3c84c72402ebcc0c258f11647",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 11301,
"upload_time": "2025-07-21T10:16:28",
"upload_time_iso_8601": "2025-07-21T10:16:28.036271Z",
"url": "https://files.pythonhosted.org/packages/b2/21/f4534b95e380fd2012fb2a3ca2bc5aacf84a858574461fc437ab52856b6f/niaautoarm-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-21 10:16:28",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "firefly-cpp",
"github_project": "NiaAutoARM",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "niaautoarm"
}