ObjectTrainer


NameObjectTrainer JSON
Version 0.1 PyPI version JSON
download
home_pagehttps://github.com/Rathoreatri03/Model_Trainer
SummarySimplify YOLO model training and data splitting for object detection tasks.
upload_time2024-06-05 10:29:02
maintainerNone
docs_urlNone
authorAtri Rathore
requires_pythonNone
licenseNone
keywords python model training yolo data splitting deep learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# ObjectTrainer



ObjectTrainer is a Python package designed to simplify the process of training YOLO (You Only Look Once) models for object detection tasks. With ObjectTrainer, users can easily train YOLO models using custom datasets and split their data into training, validation, and testing sets. The package provides classes for both model training and data splitting, allowing users to efficiently manage their training pipeline. Additionally, ObjectTrainer includes functionality for saving the best-performing model weights, making it easy to deploy trained models for inference tasks.



## Features



- Train YOLO models with custom datasets

- Split datasets into training, validation, and testing sets

- Save best-performing model weights for deployment



## Installation



You can install ObjectTrainer using pip:



```bash

pip install ObjectTrainer

````



## Usage



## Training a YOLO Model



```python

from ObjectTrainer import YOLO_trainer



# Initialize YOLO Trainer with absolute data.yaml folder path and absolute destination folder path for best weights

trainer = YOLO_trainer(Data_yaml_fold_path='path/to/data.yaml', Best_Weight_dest='path/to/destination', epochs=50)



# Run the full training process

trainer.run_full_training()

```



### Splitting Data



```python

from ObjectTrainer import data_splitter



# Initialize Data Splitter with absolute data folder path, destination folder path, and number of classes

splitter = data_splitter(data_folder='path/to/data', dest_fold='path/to/destination', no_classes=3)



# Run the full data splitting process

splitter.run_full_split()

```



## License



Model Trainer is licensed under the MIT License. See the [LICENSE](https://github.com/Rathoreatri03/Model_Trainer/blob/main/LICENSE) file for details.



## Support



For support, please open an issue on our [GitHub repository](https://github.com/Rathoreatri03/Model_Trainer/issues).

```



This Markdown-formatted README includes the updated usage instructions with the new single-method calls for training and data splitting, making it easy for users to follow and implement.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Rathoreatri03/Model_Trainer",
    "name": "ObjectTrainer",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "python, model training, YOLO, data splitting, deep learning",
    "author": "Atri Rathore",
    "author_email": "<rathoreatri@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/76/dc/a352c260d99ccb7521065a61c0414a6653cad41e9bf9cee750492c889de5/ObjectTrainer-0.1.tar.gz",
    "platform": null,
    "description": "\r\n# ObjectTrainer\r\n\r\n\r\n\r\nObjectTrainer is a Python package designed to simplify the process of training YOLO (You Only Look Once) models for object detection tasks. With ObjectTrainer, users can easily train YOLO models using custom datasets and split their data into training, validation, and testing sets. The package provides classes for both model training and data splitting, allowing users to efficiently manage their training pipeline. Additionally, ObjectTrainer includes functionality for saving the best-performing model weights, making it easy to deploy trained models for inference tasks.\r\n\r\n\r\n\r\n## Features\r\n\r\n\r\n\r\n- Train YOLO models with custom datasets\r\n\r\n- Split datasets into training, validation, and testing sets\r\n\r\n- Save best-performing model weights for deployment\r\n\r\n\r\n\r\n## Installation\r\n\r\n\r\n\r\nYou can install ObjectTrainer using pip:\r\n\r\n\r\n\r\n```bash\r\n\r\npip install ObjectTrainer\r\n\r\n````\r\n\r\n\r\n\r\n## Usage\r\n\r\n\r\n\r\n## Training a YOLO Model\r\n\r\n\r\n\r\n```python\r\n\r\nfrom ObjectTrainer import YOLO_trainer\r\n\r\n\r\n\r\n# Initialize YOLO Trainer with absolute data.yaml folder path and absolute destination folder path for best weights\r\n\r\ntrainer = YOLO_trainer(Data_yaml_fold_path='path/to/data.yaml', Best_Weight_dest='path/to/destination', epochs=50)\r\n\r\n\r\n\r\n# Run the full training process\r\n\r\ntrainer.run_full_training()\r\n\r\n```\r\n\r\n\r\n\r\n### Splitting Data\r\n\r\n\r\n\r\n```python\r\n\r\nfrom ObjectTrainer import data_splitter\r\n\r\n\r\n\r\n# Initialize Data Splitter with absolute data folder path, destination folder path, and number of classes\r\n\r\nsplitter = data_splitter(data_folder='path/to/data', dest_fold='path/to/destination', no_classes=3)\r\n\r\n\r\n\r\n# Run the full data splitting process\r\n\r\nsplitter.run_full_split()\r\n\r\n```\r\n\r\n\r\n\r\n## License\r\n\r\n\r\n\r\nModel Trainer is licensed under the MIT License. See the [LICENSE](https://github.com/Rathoreatri03/Model_Trainer/blob/main/LICENSE) file for details.\r\n\r\n\r\n\r\n## Support\r\n\r\n\r\n\r\nFor support, please open an issue on our [GitHub repository](https://github.com/Rathoreatri03/Model_Trainer/issues).\r\n\r\n```\r\n\r\n\r\n\r\nThis Markdown-formatted README includes the updated usage instructions with the new single-method calls for training and data splitting, making it easy for users to follow and implement.\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Simplify YOLO model training and data splitting for object detection tasks.",
    "version": "0.1",
    "project_urls": {
        "Homepage": "https://github.com/Rathoreatri03/Model_Trainer"
    },
    "split_keywords": [
        "python",
        " model training",
        " yolo",
        " data splitting",
        " deep learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c415388310a0bbd21919b63cdf133761aea2c091b405e2c0cd8486c1c720f784",
                "md5": "d5a165a54e724323fcb494de22d648d8",
                "sha256": "7a0069aadf7f0d65a6ce40688fa80381673ca8b12707774e03165baefac72167"
            },
            "downloads": -1,
            "filename": "ObjectTrainer-0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d5a165a54e724323fcb494de22d648d8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 5580,
            "upload_time": "2024-06-05T10:29:00",
            "upload_time_iso_8601": "2024-06-05T10:29:00.524019Z",
            "url": "https://files.pythonhosted.org/packages/c4/15/388310a0bbd21919b63cdf133761aea2c091b405e2c0cd8486c1c720f784/ObjectTrainer-0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "76dca352c260d99ccb7521065a61c0414a6653cad41e9bf9cee750492c889de5",
                "md5": "dab42a72476cec637cc3164ffa3ea8ad",
                "sha256": "19bbdce2e53febf0da9b8c66d98dddd7276e36edc40075dcc6dfc0293e70c17c"
            },
            "downloads": -1,
            "filename": "ObjectTrainer-0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "dab42a72476cec637cc3164ffa3ea8ad",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 5145,
            "upload_time": "2024-06-05T10:29:02",
            "upload_time_iso_8601": "2024-06-05T10:29:02.519234Z",
            "url": "https://files.pythonhosted.org/packages/76/dc/a352c260d99ccb7521065a61c0414a6653cad41e9bf9cee750492c889de5/ObjectTrainer-0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-05 10:29:02",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Rathoreatri03",
    "github_project": "Model_Trainer",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "objecttrainer"
}
        
Elapsed time: 0.51512s