OeSNN-AD


NameOeSNN-AD JSON
Version 1.0.1 PyPI version JSON
download
home_page
SummaryOeSNN-UAD anomaly detector implementation for Python.
upload_time2023-12-30 10:45:41
maintainer
docs_urlNone
authorMariusz Paluch
requires_python
license
keywords python data stream spiking neural network snn anomalies anomaly detection ceemdan
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Online evolutionary Spiking Neural Network unsupervised anomaly detector

## Description

 Python implementation of OeSNN-UAD model. Model finds anomalies in one dimensional data streams. Theoretical basics about this model could be find here: https://arxiv.org/pdf/1912.08785.pdf.

## Dependencies

* numpy
* PyEMD (pip install EMD-signal) 

## Package instalation

To install package for python you should type in terminal:

```bash
    pip install OeSNN-AD
```

## Usage

Our model require from data stream to be numpy array. Additional model parameters are passed as arguments in object constructor.

The following code snippet shows package basic usage.

```python
    from oesnn_ad import OeSNNAD
    import numpy as np

    data_stream = np.array([1, 2, 3, 4, 5])
    model = oesnn_ad(data_stream)

    results = model.predict()
```

## Parameters

The following table shows model parameters and their values range.

<center>

| Parameter       | Default value | Minimal value | Maximum value |
| --------------- | :-----------: | :-----------: | :-----------: |
| window_size     |      100      |       1       |     -         |
| num_in_neurons  |      10       |       1       |     -         |
| num_out_neurons |      50       |       1       |     -         |
| ts_factor       |      1000     |       0       |     -         |
| mod             |      0.6      |       0       |     1         |
| c_factor        |      0.6      |       0       |     1         |
| epsilon         |      2        |       2       |     -         |
| ksi             |      0.9      |       0       |     1         |
| sim             |      0.15     |       0       |     -         |
| beta            |      1.6      |       0       |     -         |

</center>

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "OeSNN-AD",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,data stream,spiking neural network,SNN,anomalies,anomaly detection,CEEMDAN",
    "author": "Mariusz Paluch",
    "author_email": "mariuszpaluch001@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/a4/42/f614a49315e1b4e5a1f5ea590e8897f5cd6ea3e546399c80bbcc2d4d51a6/OeSNN-AD-1.0.1.tar.gz",
    "platform": null,
    "description": "\n# Online evolutionary Spiking Neural Network unsupervised anomaly detector\n\n## Description\n\n Python implementation of OeSNN-UAD model. Model finds anomalies in one dimensional data streams. Theoretical basics about this model could be find here: https://arxiv.org/pdf/1912.08785.pdf.\n\n## Dependencies\n\n* numpy\n* PyEMD (pip install EMD-signal) \n\n## Package instalation\n\nTo install package for python you should type in terminal:\n\n```bash\n    pip install OeSNN-AD\n```\n\n## Usage\n\nOur model require from data stream to be numpy array. Additional model parameters are passed as arguments in object constructor.\n\nThe following code snippet shows package basic usage.\n\n```python\n    from oesnn_ad import OeSNNAD\n    import numpy as np\n\n    data_stream = np.array([1, 2, 3, 4, 5])\n    model = oesnn_ad(data_stream)\n\n    results = model.predict()\n```\n\n## Parameters\n\nThe following table shows model parameters and their values range.\n\n<center>\n\n| Parameter       | Default value | Minimal value | Maximum value |\n| --------------- | :-----------: | :-----------: | :-----------: |\n| window_size     |      100      |       1       |     -         |\n| num_in_neurons  |      10       |       1       |     -         |\n| num_out_neurons |      50       |       1       |     -         |\n| ts_factor       |      1000     |       0       |     -         |\n| mod             |      0.6      |       0       |     1         |\n| c_factor        |      0.6      |       0       |     1         |\n| epsilon         |      2        |       2       |     -         |\n| ksi             |      0.9      |       0       |     1         |\n| sim             |      0.15     |       0       |     -         |\n| beta            |      1.6      |       0       |     -         |\n\n</center>\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "OeSNN-UAD anomaly detector implementation for Python.",
    "version": "1.0.1",
    "project_urls": null,
    "split_keywords": [
        "python",
        "data stream",
        "spiking neural network",
        "snn",
        "anomalies",
        "anomaly detection",
        "ceemdan"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "711e281b55c78cc3df76c8fd3205ce6a71db687443cfa54144986ce384832647",
                "md5": "21e3196cd4910badeb37a98c741c574d",
                "sha256": "f74279bf9f91810305bda83851be353e3eac86ef73bc27b69c67d4739096ee48"
            },
            "downloads": -1,
            "filename": "OeSNN_AD-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "21e3196cd4910badeb37a98c741c574d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 18408,
            "upload_time": "2023-12-30T10:45:38",
            "upload_time_iso_8601": "2023-12-30T10:45:38.491655Z",
            "url": "https://files.pythonhosted.org/packages/71/1e/281b55c78cc3df76c8fd3205ce6a71db687443cfa54144986ce384832647/OeSNN_AD-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a442f614a49315e1b4e5a1f5ea590e8897f5cd6ea3e546399c80bbcc2d4d51a6",
                "md5": "124b6a67755a06f25edba4592659df3b",
                "sha256": "841a4d09286fa0f98812ea8445444e06f0fcc4d90ccbb3aca92b9b323f523789"
            },
            "downloads": -1,
            "filename": "OeSNN-AD-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "124b6a67755a06f25edba4592659df3b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 13208,
            "upload_time": "2023-12-30T10:45:41",
            "upload_time_iso_8601": "2023-12-30T10:45:41.250078Z",
            "url": "https://files.pythonhosted.org/packages/a4/42/f614a49315e1b4e5a1f5ea590e8897f5cd6ea3e546399c80bbcc2d4d51a6/OeSNN-AD-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-30 10:45:41",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "oesnn-ad"
}
        
Elapsed time: 0.38053s