Orange3-MLflow-Export


NameOrange3-MLflow-Export JSON
Version 0.6.4 PyPI version JSON
download
home_pagehttps://github.com/NIRLab-com/mlflow-model-widget
SummaryExport Orange3 models with preprocessing pipelines to MLflow format for production deployment.
upload_time2025-10-08 14:41:26
maintainerNone
docs_urlNone
authorNIRLAB AG
requires_python>=3.8
licenseGPL-3.0-only
keywords orange3 add-on mlflow machine learning model export data science deployment preprocessing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Orange3 MLflow Export
====================

**⚠️ Experimental**: This widget is under development and should be used with care.

Export Orange3 machine learning models to MLflow format with preprocessing pipelines.

## Installation

```bash
pip install orange3-mlflow-export
```

## Usage

In Orange GUI:
1. Build your workflow (File → Preprocess → Model)
2. Add MLflow Export widget from the Example section
3. Connect model, preprocessor, and sample data
4. Set export path and save

The exported model can be served with:
```bash
mlflow models serve -m ./model.mlflow -p 8080
```

## Current Limitations

- Column names from Orange are intentionally ignored (uses positional mapping)
- Precise dependency versions are not exported in MLflow models
- Explicit list of required Orange addons is not exported
- May not work with all Orange preprocessing widgets

## Requirements

- Python 3.8+
- Orange3
- MLflow
- pandas, numpy, scikit-learn
- cloudpickle

## License

GPL-3.0

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/NIRLab-com/mlflow-model-widget",
    "name": "Orange3-MLflow-Export",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "orange3 add-on, mlflow, machine learning, model export, data science, deployment, preprocessing",
    "author": "NIRLAB AG",
    "author_email": "dev@nirlab.com",
    "download_url": "https://files.pythonhosted.org/packages/b5/51/d11649ffc77d3ad739c8d3dbea06d728e7458b55d31c3612bb4771289676/orange3_mlflow_export-0.6.4.tar.gz",
    "platform": null,
    "description": "Orange3 MLflow Export\n====================\n\n**\u26a0\ufe0f Experimental**: This widget is under development and should be used with care.\n\nExport Orange3 machine learning models to MLflow format with preprocessing pipelines.\n\n## Installation\n\n```bash\npip install orange3-mlflow-export\n```\n\n## Usage\n\nIn Orange GUI:\n1. Build your workflow (File \u2192 Preprocess \u2192 Model)\n2. Add MLflow Export widget from the Example section\n3. Connect model, preprocessor, and sample data\n4. Set export path and save\n\nThe exported model can be served with:\n```bash\nmlflow models serve -m ./model.mlflow -p 8080\n```\n\n## Current Limitations\n\n- Column names from Orange are intentionally ignored (uses positional mapping)\n- Precise dependency versions are not exported in MLflow models\n- Explicit list of required Orange addons is not exported\n- May not work with all Orange preprocessing widgets\n\n## Requirements\n\n- Python 3.8+\n- Orange3\n- MLflow\n- pandas, numpy, scikit-learn\n- cloudpickle\n\n## License\n\nGPL-3.0\n",
    "bugtrack_url": null,
    "license": "GPL-3.0-only",
    "summary": "Export Orange3 models with preprocessing pipelines to MLflow format for production deployment.",
    "version": "0.6.4",
    "project_urls": {
        "Bug Reports": "https://github.com/NIRLab-com/mlflow-model-widget/issues",
        "Documentation": "https://github.com/NIRLab-com/mlflow-model-widget/blob/main/README_MLFLOW_WIDGET.md",
        "Homepage": "https://github.com/NIRLab-com/mlflow-model-widget",
        "Source": "https://github.com/NIRLab-com/mlflow-model-widget"
    },
    "split_keywords": [
        "orange3 add-on",
        " mlflow",
        " machine learning",
        " model export",
        " data science",
        " deployment",
        " preprocessing"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "43a9968ef59f3a558aceb84063f65a725180f1fa14acba8b86167a548924ed1a",
                "md5": "9da2a8e9236970182aa614ce2ced4c15",
                "sha256": "4e783b24671f2225abe2ea8280da2290b9ff7de4c42bd1b582e96ce31372a14f"
            },
            "downloads": -1,
            "filename": "orange3_mlflow_export-0.6.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9da2a8e9236970182aa614ce2ced4c15",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 11197,
            "upload_time": "2025-10-08T14:41:26",
            "upload_time_iso_8601": "2025-10-08T14:41:26.127466Z",
            "url": "https://files.pythonhosted.org/packages/43/a9/968ef59f3a558aceb84063f65a725180f1fa14acba8b86167a548924ed1a/orange3_mlflow_export-0.6.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b551d11649ffc77d3ad739c8d3dbea06d728e7458b55d31c3612bb4771289676",
                "md5": "e319636bbfa8f95ead1e1b7bec04b03f",
                "sha256": "9d94babf1f9671345e848c0c5ba932f922dc3cd69a59cdbfa5c8e9707ec1d988"
            },
            "downloads": -1,
            "filename": "orange3_mlflow_export-0.6.4.tar.gz",
            "has_sig": false,
            "md5_digest": "e319636bbfa8f95ead1e1b7bec04b03f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 13175,
            "upload_time": "2025-10-08T14:41:26",
            "upload_time_iso_8601": "2025-10-08T14:41:26.903481Z",
            "url": "https://files.pythonhosted.org/packages/b5/51/d11649ffc77d3ad739c8d3dbea06d728e7458b55d31c3612bb4771289676/orange3_mlflow_export-0.6.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-08 14:41:26",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "NIRLab-com",
    "github_project": "mlflow-model-widget",
    "github_not_found": true,
    "lcname": "orange3-mlflow-export"
}
        
Elapsed time: 8.82326s