Orange3-Text


NameOrange3-Text JSON
Version 1.16.1 PyPI version JSON
download
home_pagehttps://github.com/biolab/orange3-text
SummaryOrange3 TextMining add-on.
upload_time2024-08-30 07:45:45
maintainerNone
docs_urlNone
authorBioinformatics Laboratory, FRI UL
requires_pythonNone
licenseNone
keywords orange3-text data mining orange3 add-on
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            Orange3 Text
============

Orange add-on for text mining. It provides access to publicly available data,
like NY Times, Twitter and PubMed. Further, it provides tools for preprocessing,
constructing vector spaces (like bag-of-words, topic modeling and word2vec) and
visualizations like word cloud end geo map. All features can be combined with
powerful data mining techniques from the Orange data mining framework.

See [documentation](http://orange3-text.readthedocs.org/).

Features
--------
#### Access to data
* Load a corpus of text documents
* Access publicly available data (The Guardian, NY Times, Twitter, Wikipedia, PubMed)

#### Text analysis
* Preprocess corpus
* Generate bag of words
* Embed documents into vector space
* Perform sentiment analysis
* Detect emotions in tweets
* Discover topics in the text
* Compute document statistics
* Visualize frequent words in the word cloud
* Find words that enrich selected documents

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/biolab/orange3-text",
    "name": "Orange3-Text",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "orange3-text, data mining, orange3 add-on",
    "author": "Bioinformatics Laboratory, FRI UL",
    "author_email": "info@biolab.si",
    "download_url": "https://files.pythonhosted.org/packages/c7/61/0c1fa04e5ff56669aeb63caa4b8ba6516eae7217c220bb615c4bdbc58ee4/orange3_text-1.16.1.tar.gz",
    "platform": null,
    "description": "Orange3 Text\n============\n\nOrange add-on for text mining. It provides access to publicly available data,\nlike NY Times, Twitter and PubMed. Further, it provides tools for preprocessing,\nconstructing vector spaces (like bag-of-words, topic modeling and word2vec) and\nvisualizations like word cloud end geo map. All features can be combined with\npowerful data mining techniques from the Orange data mining framework.\n\nSee [documentation](http://orange3-text.readthedocs.org/).\n\nFeatures\n--------\n#### Access to data\n* Load a corpus of text documents\n* Access publicly available data (The Guardian, NY Times, Twitter, Wikipedia, PubMed)\n\n#### Text analysis\n* Preprocess corpus\n* Generate bag of words\n* Embed documents into vector space\n* Perform sentiment analysis\n* Detect emotions in tweets\n* Discover topics in the text\n* Compute document statistics\n* Visualize frequent words in the word cloud\n* Find words that enrich selected documents\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Orange3 TextMining add-on.",
    "version": "1.16.1",
    "project_urls": {
        "Download": "https://github.com/biolab/orange3-text/tarball/1.16.1",
        "Homepage": "https://github.com/biolab/orange3-text"
    },
    "split_keywords": [
        "orange3-text",
        " data mining",
        " orange3 add-on"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5779945f6a3cec011497c9b1ec4311853ec0dde6c3ad26a6046242c4ece8de63",
                "md5": "133e23400d86edaffa3fc044adbd5b77",
                "sha256": "5d9f4565132ddf06ce91bacf3c80f778d007156f64242ecfc900a2afaa4c7ffe"
            },
            "downloads": -1,
            "filename": "Orange3_Text-1.16.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "133e23400d86edaffa3fc044adbd5b77",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 33273454,
            "upload_time": "2024-08-30T07:45:41",
            "upload_time_iso_8601": "2024-08-30T07:45:41.010276Z",
            "url": "https://files.pythonhosted.org/packages/57/79/945f6a3cec011497c9b1ec4311853ec0dde6c3ad26a6046242c4ece8de63/Orange3_Text-1.16.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c7610c1fa04e5ff56669aeb63caa4b8ba6516eae7217c220bb615c4bdbc58ee4",
                "md5": "b811074f9267a1dda09b6fb53d45b881",
                "sha256": "551fa88b8d9d188d45a053696d4e5bba7829ee4542418d725eff0103aad63917"
            },
            "downloads": -1,
            "filename": "orange3_text-1.16.1.tar.gz",
            "has_sig": false,
            "md5_digest": "b811074f9267a1dda09b6fb53d45b881",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 30306024,
            "upload_time": "2024-08-30T07:45:45",
            "upload_time_iso_8601": "2024-08-30T07:45:45.848433Z",
            "url": "https://files.pythonhosted.org/packages/c7/61/0c1fa04e5ff56669aeb63caa4b8ba6516eae7217c220bb615c4bdbc58ee4/orange3_text-1.16.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-30 07:45:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "biolab",
    "github_project": "orange3-text",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "requirements": [],
    "tox": true,
    "lcname": "orange3-text"
}
        
Elapsed time: 1.62728s