Orange3-Timeseries


NameOrange3-Timeseries JSON
Version 0.6.3 PyPI version JSON
download
home_pagehttps://github.com/biolab/orange3-timeseries
SummaryOrange3 add-on for exploring time series and sequential data.
upload_time2024-03-15 15:16:21
maintainer
docs_urlNone
authorBioinformatics Laboratory, FRI UL
requires_python
licenseGPLv3+
keywords time series sequence analysis orange3 add-on arima var model forecast
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            Orange3-Timeseries
==================

Orange add-on for analyzing, visualizing, manipulating, and forecasting time
series data. The add-on includes ARIMA and VAR models, model evaluation, time
series preprocessing, seasonal adjustment and a wide array of visualizations.
See [documentation](http://orange3-timeseries.readthedocs.org/).

Features
--------
#### Use time series data
* reinterpret data as time series
* induce missing values
* generate time series from Yahoo Finance stock market data

#### Analysis of time series data
* aggregate data by a given time interval
* decompose the time series into seasonal, trend, and residual components
* apply rolling window functions to the time series
* make forecasts for the future
* evaluate models

#### Visualize time series data
* visualize time series’ sequence and progression 
* visualize variables’ auto-correlation
* visualize time series’ cycles, seasonality, periodicity, and most significant periods

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/biolab/orange3-timeseries",
    "name": "Orange3-Timeseries",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "time series,sequence analysis,orange3 add-on,ARIMA,VAR model,forecast",
    "author": "Bioinformatics Laboratory, FRI UL",
    "author_email": "info@biolab.si",
    "download_url": "https://files.pythonhosted.org/packages/bc/0f/51adc3607cc4e4b8987e4fa8f9bb56a0fbd7a8a5b8009efb18a8a0ce9dec/Orange3-Timeseries-0.6.3.tar.gz",
    "platform": null,
    "description": "Orange3-Timeseries\n==================\n\nOrange add-on for analyzing, visualizing, manipulating, and forecasting time\nseries data. The add-on includes ARIMA and VAR models, model evaluation, time\nseries preprocessing, seasonal adjustment and a wide array of visualizations.\nSee [documentation](http://orange3-timeseries.readthedocs.org/).\n\nFeatures\n--------\n#### Use time series data\n* reinterpret data as time series\n* induce missing values\n* generate time series from Yahoo Finance stock market data\n\n#### Analysis of time series data\n* aggregate data by a given time interval\n* decompose the time series into seasonal, trend, and residual components\n* apply rolling window functions to the time series\n* make forecasts for the future\n* evaluate models\n\n#### Visualize time series data\n* visualize time series\u2019 sequence and progression \n* visualize variables\u2019 auto-correlation\n* visualize time series\u2019 cycles, seasonality, periodicity, and most significant periods\n",
    "bugtrack_url": null,
    "license": "GPLv3+",
    "summary": "Orange3 add-on for exploring time series and sequential data.",
    "version": "0.6.3",
    "project_urls": {
        "Homepage": "https://github.com/biolab/orange3-timeseries"
    },
    "split_keywords": [
        "time series",
        "sequence analysis",
        "orange3 add-on",
        "arima",
        "var model",
        "forecast"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f4c590d5d0c321760a76e2a2b5344fc76239b0bc88a1c4db74fa2528719c1052",
                "md5": "358eed3d8ce90239ae12ddbb7a5abb82",
                "sha256": "4d04d1a3d4ccf2e44e2a306b18a079fb5f793f4a507b7de2c32a3916c906ff04"
            },
            "downloads": -1,
            "filename": "Orange3_Timeseries-0.6.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "358eed3d8ce90239ae12ddbb7a5abb82",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 280878,
            "upload_time": "2024-03-15T15:16:19",
            "upload_time_iso_8601": "2024-03-15T15:16:19.515891Z",
            "url": "https://files.pythonhosted.org/packages/f4/c5/90d5d0c321760a76e2a2b5344fc76239b0bc88a1c4db74fa2528719c1052/Orange3_Timeseries-0.6.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bc0f51adc3607cc4e4b8987e4fa8f9bb56a0fbd7a8a5b8009efb18a8a0ce9dec",
                "md5": "5ff5ff5e6092a7c1384359e08a02fab2",
                "sha256": "504135f946633419d17cadd12f91d1f1a6fb6e080acef349e4da33b8425b2c3c"
            },
            "downloads": -1,
            "filename": "Orange3-Timeseries-0.6.3.tar.gz",
            "has_sig": false,
            "md5_digest": "5ff5ff5e6092a7c1384359e08a02fab2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 2267856,
            "upload_time": "2024-03-15T15:16:21",
            "upload_time_iso_8601": "2024-03-15T15:16:21.649800Z",
            "url": "https://files.pythonhosted.org/packages/bc/0f/51adc3607cc4e4b8987e4fa8f9bb56a0fbd7a8a5b8009efb18a8a0ce9dec/Orange3-Timeseries-0.6.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-15 15:16:21",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "biolab",
    "github_project": "orange3-timeseries",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "tox": true,
    "lcname": "orange3-timeseries"
}
        
Elapsed time: 0.93097s