Orange3-Timeseries
==================
Orange add-on for analyzing, visualizing, manipulating, and forecasting time
series data. The add-on includes ARIMA and VAR models, model evaluation, time
series preprocessing, seasonal adjustment and a wide array of visualizations.
See [documentation](http://orange3-timeseries.readthedocs.org/).
Features
--------
#### Use time series data
* reinterpret data as time series
* induce missing values
* generate time series from Yahoo Finance stock market data
#### Analysis of time series data
* aggregate data by a given time interval
* decompose the time series into seasonal, trend, and residual components
* apply rolling window functions to the time series
* make forecasts for the future
* evaluate models
#### Visualize time series data
* visualize time series’ sequence and progression
* visualize variables’ auto-correlation
* visualize time series’ cycles, seasonality, periodicity, and most significant periods
Raw data
{
"_id": null,
"home_page": "https://github.com/biolab/orange3-timeseries",
"name": "Orange3-Timeseries",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "time series,sequence analysis,orange3 add-on,ARIMA,VAR model,forecast",
"author": "Bioinformatics Laboratory, FRI UL",
"author_email": "info@biolab.si",
"download_url": "https://files.pythonhosted.org/packages/bc/0f/51adc3607cc4e4b8987e4fa8f9bb56a0fbd7a8a5b8009efb18a8a0ce9dec/Orange3-Timeseries-0.6.3.tar.gz",
"platform": null,
"description": "Orange3-Timeseries\n==================\n\nOrange add-on for analyzing, visualizing, manipulating, and forecasting time\nseries data. The add-on includes ARIMA and VAR models, model evaluation, time\nseries preprocessing, seasonal adjustment and a wide array of visualizations.\nSee [documentation](http://orange3-timeseries.readthedocs.org/).\n\nFeatures\n--------\n#### Use time series data\n* reinterpret data as time series\n* induce missing values\n* generate time series from Yahoo Finance stock market data\n\n#### Analysis of time series data\n* aggregate data by a given time interval\n* decompose the time series into seasonal, trend, and residual components\n* apply rolling window functions to the time series\n* make forecasts for the future\n* evaluate models\n\n#### Visualize time series data\n* visualize time series\u2019 sequence and progression \n* visualize variables\u2019 auto-correlation\n* visualize time series\u2019 cycles, seasonality, periodicity, and most significant periods\n",
"bugtrack_url": null,
"license": "GPLv3+",
"summary": "Orange3 add-on for exploring time series and sequential data.",
"version": "0.6.3",
"project_urls": {
"Homepage": "https://github.com/biolab/orange3-timeseries"
},
"split_keywords": [
"time series",
"sequence analysis",
"orange3 add-on",
"arima",
"var model",
"forecast"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f4c590d5d0c321760a76e2a2b5344fc76239b0bc88a1c4db74fa2528719c1052",
"md5": "358eed3d8ce90239ae12ddbb7a5abb82",
"sha256": "4d04d1a3d4ccf2e44e2a306b18a079fb5f793f4a507b7de2c32a3916c906ff04"
},
"downloads": -1,
"filename": "Orange3_Timeseries-0.6.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "358eed3d8ce90239ae12ddbb7a5abb82",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 280878,
"upload_time": "2024-03-15T15:16:19",
"upload_time_iso_8601": "2024-03-15T15:16:19.515891Z",
"url": "https://files.pythonhosted.org/packages/f4/c5/90d5d0c321760a76e2a2b5344fc76239b0bc88a1c4db74fa2528719c1052/Orange3_Timeseries-0.6.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "bc0f51adc3607cc4e4b8987e4fa8f9bb56a0fbd7a8a5b8009efb18a8a0ce9dec",
"md5": "5ff5ff5e6092a7c1384359e08a02fab2",
"sha256": "504135f946633419d17cadd12f91d1f1a6fb6e080acef349e4da33b8425b2c3c"
},
"downloads": -1,
"filename": "Orange3-Timeseries-0.6.3.tar.gz",
"has_sig": false,
"md5_digest": "5ff5ff5e6092a7c1384359e08a02fab2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 2267856,
"upload_time": "2024-03-15T15:16:21",
"upload_time_iso_8601": "2024-03-15T15:16:21.649800Z",
"url": "https://files.pythonhosted.org/packages/bc/0f/51adc3607cc4e4b8987e4fa8f9bb56a0fbd7a8a5b8009efb18a8a0ce9dec/Orange3-Timeseries-0.6.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-15 15:16:21",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "biolab",
"github_project": "orange3-timeseries",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"tox": true,
"lcname": "orange3-timeseries"
}