Outlyzer


NameOutlyzer JSON
Version 0.0.4 PyPI version JSON
download
home_pagehttps://github.com/Devparihar5/Outlyzer
SummaryOutlier detection
upload_time2023-05-13 09:52:12
maintainer
docs_urlNone
authorDevendra Parihar
requires_python
license
keywords outliers outlier-detection data-science machine-learning statistics zscore iqr visualization
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Outlyzer -A Python package to detect outliers in a dataset


Outlyzer is a Python library that provides various methods for detecting outliers in a dataset. It includes implementation of Z-score, IQR, and Mahalanobis distance methods for identifying outliers, as well as visualization-based methods using scatter plots, box plots, and other types of visualizations.


## Installation
You can install Outlyzer using pip:
```
pip install outlyzer
```


Usage:

    - Import the desired method from the library, e.g.:
        from Outlyzer.zscore import detect_outliers_zscore        
        from Outlyzer.iqr import detect_outliers_iqr

    - Pass your dataset or data series to the respective function, e.g.:
        outliers_zscore = detect_outliers_zscore(data)
        outliers_iqr = detect_outliers_iqr(data)
    
    The functions will return a boolean array indicating whether each data point is an outlier (True) or not (False).


## 
<p align="center">
  <a href="https://star-history.com/#devparihar5/Outlyzer&Date">
    <img src="https://api.star-history.com/svg?repos=Devparihar5/Outlyzer&type=Date" alt="Star History Chart">
  </a>
</p>

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Devparihar5/Outlyzer",
    "name": "Outlyzer",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "outliers,outlier-detection,data-science,machine-learning,statistics,zscore,iqr,visualization",
    "author": "Devendra Parihar",
    "author_email": "devendraparihar340@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/af/5e/03bd34edf150d4f9a8793d46079391829edff7c11fdf34b3a8a7efbeaa75/Outlyzer-0.0.4.tar.gz",
    "platform": null,
    "description": "# Outlyzer -A Python package to detect outliers in a dataset\r\n\r\n\r\nOutlyzer is a Python library that provides various methods for detecting outliers in a dataset. It includes implementation of Z-score, IQR, and Mahalanobis distance methods for identifying outliers, as well as visualization-based methods using scatter plots, box plots, and other types of visualizations.\r\n\r\n\r\n## Installation\r\nYou can install Outlyzer using pip:\r\n```\r\npip install outlyzer\r\n```\r\n\r\n\r\nUsage:\r\n\r\n    - Import the desired method from the library, e.g.:\r\n        from Outlyzer.zscore import detect_outliers_zscore        \r\n        from Outlyzer.iqr import detect_outliers_iqr\r\n\r\n    - Pass your dataset or data series to the respective function, e.g.:\r\n        outliers_zscore = detect_outliers_zscore(data)\r\n        outliers_iqr = detect_outliers_iqr(data)\r\n    \r\n    The functions will return a boolean array indicating whether each data point is an outlier (True) or not (False).\r\n\r\n\r\n## \r\n<p align=\"center\">\r\n  <a href=\"https://star-history.com/#devparihar5/Outlyzer&Date\">\r\n    <img src=\"https://api.star-history.com/svg?repos=Devparihar5/Outlyzer&type=Date\" alt=\"Star History Chart\">\r\n  </a>\r\n</p>\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Outlier detection",
    "version": "0.0.4",
    "project_urls": {
        "Homepage": "https://github.com/Devparihar5/Outlyzer"
    },
    "split_keywords": [
        "outliers",
        "outlier-detection",
        "data-science",
        "machine-learning",
        "statistics",
        "zscore",
        "iqr",
        "visualization"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6c20a7d45ee0806e06ffac3dcc639e92c14ab19d8d6b0e227eeeb50685d43428",
                "md5": "5d91cbbf508b8ffc3e1a2c29522cafd1",
                "sha256": "7a50a57bd5ae07b766b015c623646d5901a912b457ef042973da8fc80dd7cc8f"
            },
            "downloads": -1,
            "filename": "Outlyzer-0.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5d91cbbf508b8ffc3e1a2c29522cafd1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 9614,
            "upload_time": "2023-05-13T09:52:09",
            "upload_time_iso_8601": "2023-05-13T09:52:09.778587Z",
            "url": "https://files.pythonhosted.org/packages/6c/20/a7d45ee0806e06ffac3dcc639e92c14ab19d8d6b0e227eeeb50685d43428/Outlyzer-0.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "af5e03bd34edf150d4f9a8793d46079391829edff7c11fdf34b3a8a7efbeaa75",
                "md5": "43d9eb242eebaf7da26fba96b4351230",
                "sha256": "ddcfe16bab76eb39cba858cb95afa05ea210823e327be0a967105ffc5c24b01d"
            },
            "downloads": -1,
            "filename": "Outlyzer-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "43d9eb242eebaf7da26fba96b4351230",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 8003,
            "upload_time": "2023-05-13T09:52:12",
            "upload_time_iso_8601": "2023-05-13T09:52:12.171523Z",
            "url": "https://files.pythonhosted.org/packages/af/5e/03bd34edf150d4f9a8793d46079391829edff7c11fdf34b3a8a7efbeaa75/Outlyzer-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-13 09:52:12",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Devparihar5",
    "github_project": "Outlyzer",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "outlyzer"
}
        
Elapsed time: 1.26288s